Focal adhesion kinase splicing and protein activation in papillary thyroid carcinoma progression.

Histochem Cell Biol

Department of Endocrinology and Radioimmunology, Institute for Application of Nuclear Energy-INEP, University of Belgrade, Banatska 31b, 11080, Zemun-Belgrade, Serbia.

Published: February 2022

Papillary thyroid carcinoma (PTC), a common endocrine malignancy, presents a challenge from a prognostic standpoint. Molecular alterations underlying PTC progression include deregulation of focal adhesion kinase (FAK) at post-transcriptional and post-translational levels. Searching for candidate markers of PTC progression, we investigated the prognostic significance of FAK alterations on mRNA/protein level. The expression levels and subcellular localisation of auto-phosphorylated FAK (pY397-FAK) were determined by western blot (WB) and immunohistochemistry. The quantity of total FAK mRNA, alternatively spliced FAK-Del26 and FAK-Del33 variants were analysed by RT-qPCR and related to pY397-FAK expression and subcellular distribution. The results were correlated with clinicopathological parameters of the patients. The expression of pY397-FAK was significantly elevated in malignant samples. Active FAK showed predominant cytoplasmic distribution with co-occurrence along the membrane, while nuclear staining was found less frequently. Expression of pY397-FAK in separate cellular compartments correlated with adverse clinicopathological parameters, but the strongest association was found when their mean scores were calculated. Alternatively spliced FAK-Del33 and total FAK transcripts positively correlated to pY397-FAK protein levels as well as to characteristics of PTC advancement. Over-expression of FAK on mRNA (total and Del-33) and activated protein (pY397-FAK) levels is a feature of PTC advanced stages. Of the analysed alterations, the mean pY397-FAK IHC score showed the best predictive performance. Correlation between mRNA FAK-Del33 and pY397-FAK expression implies a regulatory role of alternative splicing in PTC patients.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00418-021-02056-yDOI Listing

Publication Analysis

Top Keywords

focal adhesion
8
adhesion kinase
8
papillary thyroid
8
thyroid carcinoma
8
ptc progression
8
py397-fak
8
total fak
8
fak mrna
8
alternatively spliced
8
py397-fak expression
8

Similar Publications

[Effects of Xihuang Pills on angiogenesis, invasion, and metastasis of p rostate cancer based on FAK/Src/ERK pathway].

Zhongguo Zhong Yao Za Zhi

December 2024

Hunan Provincial Key Laboratory of Traditional Chinese Medicine Prescription and Transformation, Hunan University of Chinese Medicine Changsha 410208, China Key Laboratory of Tumor Prevention Mechanism of Traditional Chinese Medicine,Hunan University of Chinese Medicine Changsha 410208, China Key Laboratory of Traditional Chinese Medicine Tumour in Hunan Universities, Hunan University of Chinese Medicine Changsha 410208, China College of Integrative Medicine, Hunan University of Chinese Medicine Changsha 410208, China.

Based on the focal adhesion kinase(FAK)/steroid receptor coactivator(Src)/extracellular regulated protein kinase(ERK) pathway, this study explored the effects of Xihuang Pills on angiogenesis, invasion, and metastasis in prostate cancer. Liquid chromatography-tandem mass spectrometry(LC-MS/MS) was used to analyze and identify the active ingredients of Xihuang Pills. Bioinformatics techniques, including R language and Perl programs, were employed to analyze the interactions between prostate cancer-related targets and the potential targets of Xihuang Pills.

View Article and Find Full Text PDF

Genetically encoded tension sensors (GETSs) allow for quantifying forces experienced by intracellular proteins involved in mechanotransduction. The vast majority of GETSs are comprised of a FRET pair flanking an elastic "spring-like" domain that gradually extends in response to force. Because of ensemble averaging, the FRET signal generated by such analog sensors conceals forces that deviate from the average, and hence it is unknown if a subset of proteins experience greater magnitudes of force.

View Article and Find Full Text PDF

Adhesive and Conductive Hydrogels for the Treatment of Myocardial Infarction.

Macromol Rapid Commun

January 2025

Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China.

Myocardial infarction (MI) is a leading cause of mortality among cardiovascular diseases. Following MI, the damaged myocardium is progressively being replaced by fibrous scar tissue, which exhibits poor electrical conductivity, ultimately resulting in arrhythmias and adverse cardiac remodeling. Due to their extracellular matrix-like structure and excellent biocompatibility, hydrogels are emerging as a focal point in cardiac tissue engineering.

View Article and Find Full Text PDF

Paxillin (PXN) and focal adhesion kinase (FAK) are two major components of the focal adhesion complex, a multiprotein structure linking the intracellular cytoskeleton to the cell exterior. PXN interacts directly with the C-terminal targeting domain of FAK (FAT) via its intrinsically disordered N-terminal domain. This interaction is necessary and sufficient for localizing FAK to focal adhesions.

View Article and Find Full Text PDF

Introduction: Nasopharyngeal cancer (NPC) is a multifaceted disease characterized by genetic and epigenetic modifications. While Epstein-Barr virus (EBV) infection is a known risk factor, recent studies highlight the significant role of DNA methylation in NPC pathogenesis. Aberrant methylation, particularly at CpG sites, can silence tumour suppressor genes, promoting uncontrolled cell growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!