The legacy of predator threat shapes prey foraging behaviour.

Oecologia

Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA.

Published: January 2022

Predators exert strong selection on prey foraging behaviour such that prey responses may reflect a combination of ancestral effects of predators (genetic and nongenetic transgenerational effects), past individual experience with predators (phenotypic plasticity), and current exposure to predators (behavioural response). However, the importance of these factors in shaping prey foraging behaviour is not well understood. To test the relative effects of ancestry, prior experience, and current exposure, we measured foraging rates and food size preference of different ancestry and exposure groups of Western mosquitofish in the presence and absence of immediate threat from predatory largemouth bass. Our results confirm that mosquitofish had lower foraging rate in the immediate presence of predator threat. Mosquitofish also foraged at a lower rate if they had ancestry with predators, regardless of immediate threat. In contrast, individual prior experience with predators only caused reduced foraging rates in the immediate presence of a predator. This suggests that phenotypic plasticity could carry a lower risk of maladaptive antipredator responses-i.e., reduced food intake-in the complete absence of a predator. Finally, in the presence of a predator, mosquitofish with both ancestry and experience with predators consumed larger, presumably more energetically valuable, food items. Overall, our results show that non-consumptive effects of predators on prey behaviour can persist within and across generations, such that the legacy of past predator exposure-or "the ghost of predation past"-may continue to shape prey behaviour even when predators are no longer around.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00442-021-05073-9DOI Listing

Publication Analysis

Top Keywords

prey foraging
12
foraging behaviour
12
experience predators
12
presence predator
12
predators
9
legacy predator
8
predator threat
8
behaviour predators
8
effects predators
8
phenotypic plasticity
8

Similar Publications

Background: Members of the Anopheles gambiae complex are major malaria vectors in sub-Saharan Africa. Their larval stages inhabit a variety of aquatic habitats in which, under natural circumstances, they are preyed upon by different taxa of aquatic macroinvertebrate predators. Understanding the potential impact of predators on malaria vector larval population dynamics is important for enabling integrated local mosquito control programmes with a stronger emphasis on biocontrol approaches.

View Article and Find Full Text PDF

While the content of subjective (personal) experience is inaccessible to external observers, behavioral proxies can frame the nature of that experience and suggest its cognitive requirements. Directed attention is widely recognized as a feature of animal awareness. This descriptive study used the frequency of gaze shifts in lizards and birds as an indicator of the rate at which the animals change the perceptual segmentation of their ongoing experience.

View Article and Find Full Text PDF

Adapting to Uncertainty: Foraging Strategies in (Formicidae: Ponerinae).

Insects

November 2024

Laboratório de Biologia Comportamental, Departamento de Fisiologia e Comportamento, Universidade Federal do Rio Grande do Norte, Natal 59078-970, RN, Brazil.

When searching for food, animals often make decisions about where to go, how long to stay in a foraging area, and whether to return to the most recently visited spot. These decisions can be enhanced by cognitive traits and adjusted based on previous experience. In social insects, such as ants, foraging efficiency has an impact at both the individual and colony levels.

View Article and Find Full Text PDF

Biogeochemical patterns in prey species reveal complex mercury exposure pathways from the environment to Aleutian Steller sea lions.

Mar Pollut Bull

December 2024

Department of Biology and Wildlife, University of Alaska Fairbanks, 2090 Koyukuk Dr, Fairbanks, AK 99775, USA; Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Dr, Fairbank, AK 99775, USA.

Several wildlife species exhibit marked spatial variation in toxicologically relevant tissue concentrations of mercury across the Aleutian Islands of Alaska, most notably the endangered Steller sea lion (Eumetopias jubatus). To unravel potential environmental and trophic pathways driving mercury variation in this species of concern, we investigated spatiotemporal and ecological patterns in total mercury concentrations and stable isotope ratios of carbon and nitrogen from muscle tissues of twelve mid-trophic level prey species of the region (n = 1461). Dividing samples into island groups explained biogeochemical variation better than larger spatial resolutions, with Amchitka Pass and Buldir Pass acting as strong geographic break points.

View Article and Find Full Text PDF

The evolution of adaptive phenotypic divergence requires heritable genetic variation. However, it is underappreciated that trait heritability is molded by developmental processes interacting with the environment. We hypothesized that the genetic architecture of divergent functional traits was dependent on age and foraging environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!