Here, we aimed to investigate the diagnostic value of a serological assay using the nucleocapsid protein developed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection and evaluated its performance using three commercial enzyme-linked immunosorbent assays (ELISAs), namely, Standard E 2019 novel coronavirus disease (COVID-19) total antibody (Ab) ELISA (SD Biosensor), and EDI novel coronavirus COVID-19 IgG and IgM ELISA. A recombinant nucleocapsid protein (rNP) was expressed from plants and Escherichia coli for the detection of serum total Ab. We prospectively collected 141 serum samples from 32 patients with reverse transcription-PCR (RT-PCR)-confirmed COVID-19 and determined the sensitivity and dynamics of their total Ab response. Specificity was evaluated using 158 prepandemic samples. To validate the assays, we evaluated the performance using two different cutoff values. The sensitivity and specificity for each assay were as follows: 92.91% and 94.30% (plant-rNP), 83.69% and 98.73% (SD Biosensor), 75.89% and 98.10% (E. coli-rNP), 76.47% and 100% (EDI-IgG), and 80.39% and 80% (EDI-IgM). The plant-based rNP showed the highest sensitivity and area under the receiver operating characteristic (ROC) curve (0.980) among all the assays ( < 0.05). The seroconversion rate for total Ab increased sequentially with disease progression, with a sensitivity of 100% after 10 to 12 days of post-symptom onset (PSO) for both rNP-plant-based and SD Biosensor ELISAs. After 2 weeks of PSO, the seroconversion rates were >80% and 100% for EDI-IgM and EDI-IgG ELISA, respectively. Seroconversion occurred earlier with rNP plant-based ELISA (5 days PSO) compared with E. colibased (7 days PSO) and SD Biosensor (8 days PSO) ELISA. We determined that rNP produced in plants enables the robust detection of SARS-CoV-2 total Abs. The assay can be used for serosurvey and complementary diagnosis of COVID-19. At present, the principal diagnostic methods for COVID-19 comprise the identification of viral nucleic acid by genetic approaches, including PCR-based techniques or next-generation sequencing. However, there is an urgent need for validated serological assays which are crucial for the understanding of immune responses against SARS-CoV-2. In this study, a highly sensitive and specific serological antibody assay was developed for the detection of SARS-CoV-2 with an overall accuracy of 93.56% using a recombinant nucleoprotein expressed from plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8612163 | PMC |
http://dx.doi.org/10.1128/Spectrum.00672-21 | DOI Listing |
J Gen Virol
January 2025
Division of Infection and Immunity, UCL, London, WC1E 6BT, UK.
Human immunodeficiency virus (HIV) is an exemplar virus, still the most studied and best understood and a model for mechanisms of viral replication, immune evasion and pathogenesis. In this review, we consider the earliest stages of HIV infection from transport of the virion contents through the cytoplasm to integration of the viral genome into host chromatin. We present a holistic model for the virus-host interaction during this pivotal stage of infection.
View Article and Find Full Text PDFJ Integr Bioinform
January 2025
Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung 40133, Indonesia.
The emergence of new variants of SARS-CoV-2, including Alpha, Beta, Gamma, Delta, Omicron variants, and XBB sub-variants, contributes to the number of coronavirus cases worldwide. SARS-CoV-2 is a positive RNA virus with a genome of 29.9 kb that encodes four structural proteins: spike glycoprotein (S), envelope glycoprotein (E), membrane glycoprotein (M), and nucleocapsid glycoprotein (N).
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA.
Pseudouridine (Ψ) is an abundant RNA chemical modification that plays critical biological functions. Current Ψ detection methods are limited in identifying Ψs at base-resolution in U-rich sequence contexts, where Ψ occurs frequently. Here we report "Mut-Ψ-seq" that utilizes the classic N-cyclohexyl N'-(2-morpholinoethyl)carbodiimide (CMC) agent and an evolved reverse transcriptase ("RT-1306") for Ψ mapping at base-resolution.
View Article and Find Full Text PDFMolecules
December 2024
School of Electrical Engineering, Shandong University, Jinan 250061, China.
In recent years, plasma medicine has developed rapidly as a new interdisciplinary discipline. However, the key mechanisms of interactions between cold atmospheric plasma (CAP) and biological tissue are still in the exploration stage. In this study, by introducing the reactive molecular dynamics (MD) simulation, the capsid protein (CA) molecule of HIV was selected as the model to investigate the reaction process upon impact by reactive oxygen species (ROS) from CAP and protein molecules at the atomic level.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, Heilongjiang, PR China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, PR China. Electronic address:
Porcine reproductive and respiratory syndrome virus (PRRSV) demonstrates a significantly high prevalence among swine populations. Monoclonal antibodies (mAbs) with high affinity for conserved epitopes of PRRSV can facilitate the development of a broad-spectrum detection method for this virus. This study identified two PRRSV-specific mAbs, designated 2B1 and 2C6, which recognized two conformation-dependent epitopes through indirect immunofluorescence assay (IFA) and Western blot analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!