Garlic: An Alternative Treatment for Group B Streptococcus.

Microbiol Spectr

Laboratory for Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS/CEPID), Butantan Institute, São Paulo, Brazil.

Published: December 2021

Prenatal screening in pregnant women between 35 and 37 weeks of gestation and intrapartum antibiotic prophylaxis has successfully reduced the incidence of neonatal morbidity and mortality related to Streptococcus agalactiae. However, the contamination rates of newborns are still considerable. In traditional and folk medicines, it has been observed that garlic has been effective in treating S. agalactiae infection. The aim of this study was to isolate and identify the active compounds from garlic that have antimicrobial activity against S. agalactiae. In order to do this, SP80 (Sep-Pak 80%) obtained from crude garlic extract (CGE) was fractionated by reverse-phase ultrafast liquid chromatography with UV (RP-UFLC-UV) using a Shim-pack PREP-ODS column. All fractions obtained were tested using a microbial growth inhibition test against the S. agalactiae strain (ATCC 12386). Five clinical isolates were used to confirm the action of the fractions with antimicrobial activity, and the bacterial growth curve was determined. Identification of the antimicrobial compounds was carried out through liquid chromatography coupled with mass spectrometry (LC/MS) and nuclear magnetic resonance (NMR). The active compounds found to exhibit antimicrobial activity were Ƴ-glutamyl--allyl-cysteine (fraction 18), Ƴ-glutamyl-phenylalanine (fraction 20), and the two stereoisomers ( and ) of ajoene (fraction 42). The MICs of these fractions were 5.41 mg/ml, 4.60 mg/ml, and 0.16 mg/ml, respectively, and they inhibited the growth of the clinical isolates tested. Antimicrobial compounds from garlic may be a promising source in the search for new drugs against S. agalactiae. Invasive disease due to group B streptococcal (GBS) infection results in a wide spectrum of clinical disease in neonates. Maternal colonization by GBS is the primary risk factor for disease. The strategy recommended by the Centers for Disease Control to reduce neonatal GBS infection is the culture-based screening of all pregnant women at 35 to 37 weeks of gestation and intrapartum antibiotic prophylaxis (IAP). However, indiscriminate use of antibiotics favors the selection and spread of resistant bacteria. The global scenario of antibacterial resistance has been of great concern for public health, and natural products can be a source of new substances to help us grapple with this problem.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8612145PMC
http://dx.doi.org/10.1128/Spectrum.00170-21DOI Listing

Publication Analysis

Top Keywords

antimicrobial activity
12
screening pregnant
8
pregnant women
8
gestation intrapartum
8
intrapartum antibiotic
8
antibiotic prophylaxis
8
active compounds
8
compounds garlic
8
liquid chromatography
8
clinical isolates
8

Similar Publications

Background: SHEN26 (ATV014) is an oral RNA-dependent RNA polymerase (RdRp) inhibitor with potential anti-SARS-CoV-2 activity. Safety, tolerability, and pharmacokinetic characteristics were verified in a Phase I study. This phase II study aimed to verify the efficacy and safety of SHEN26 in COVID-19 patients.

View Article and Find Full Text PDF

This study investigated the effects of non-thermal atmospheric plasma (NTAP) treatment on the growth, chemical composition, and biological activity of geranium (Pelargonium graveolens L'Herit) leaves. NTAP was applied at a frequency of 13.56 MHz, exposure time of 15 s, discharge temperature of 25 °C, and power levels (T1 = 50, T2 = 80, and T3 = 120 W).

View Article and Find Full Text PDF

Background: The negative impact of COVID-19 pandemic on healthcare service utilization has been reported in several countries. In Gabon, data on the preparedness for future pandemic are lacking. The aim of the present study was to assess the trends of hospital attendance, malaria and self-medication prevalences as well as ITN use before and during Covid-19 first epidemic waves in a paediatric wards of a sentinel site for malaria surveillance, in Libreville, Gabon.

View Article and Find Full Text PDF

Removal of Antibiotics in Breeding Wastewater Tailwater Using Microalgae-Based Process.

Bull Environ Contam Toxicol

January 2025

Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.

Ciprofloxacin (CIP) and oxytetracycline (OTC) are commonly detected antibiotic species in breeding wastewater, and microalgae-based antibiotic treatment technology is an environmentally friendly and cost-effective method for its removal. This study evaluated the effects of CIP and OTC on Scenedesmus sp. in the breeding wastewater tailwater and the removal mechanisms of antibiotics.

View Article and Find Full Text PDF

Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!