Pharmacological Chaperones for β-Galactosidase Related to G -Gangliosidosis and Morquio B: Recent Advances.

Chem Rec

Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria.

Published: November 2021

A short survey on selected β-galactosidase inhibitors as potential pharmacological chaperones for G -gangliosidosis and Morquio B associated mutants of human lysosomal β-galactosidase is provided highlighting recent developments in this particular area of lysosomal storage disorders and orphan diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tcr.202100269DOI Listing

Publication Analysis

Top Keywords

pharmacological chaperones
8
-gangliosidosis morquio
8
chaperones β-galactosidase
4
β-galactosidase -gangliosidosis
4
morquio advances
4
advances short
4
short survey
4
survey selected
4
selected β-galactosidase
4
β-galactosidase inhibitors
4

Similar Publications

Class I major histocompatibility complex (MHC-I) proteins play a pivotal role in adaptive immunity by displaying epitopic peptides to CD8+ T cells. The chaperones tapasin and TAPBPR promote the selection of immunogenic antigens from a large pool of intracellular peptides. Interactions of chaperoned MHC-I molecules with incoming peptides are transient in nature, and as a result, the precise antigen proofreading mechanism remains elusive.

View Article and Find Full Text PDF

Background: Epidemiological studies indicate that chronic short sleep and/or disrupted sleep are all associated with metabolic dysfunction, cardiovascular risk, cognitive impairments, and increased risk for Alzheimer's disease. We have shown that acute sleep deprivation disrupts proteostasis, leading to the activation of an adaptive endoplasmic reticulum (ER) stress response known as the unfolded protein response (UPR). However, prolonged ER stress triggers the integrated stress response, which has been implicated in memory impairments.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid decline in renal function. Renal ischemia-reperfusion injury (RIRI) is one of the main causes of AKI with the underlying mechanism incompletely clarified. The liver X receptors (LXRs), including LXRα and LXRβ, are members of the nuclear receptor superfamily.

View Article and Find Full Text PDF

Background: Endoplasmic reticulum stress (ERS) and the unfolded protein response (UPR) are adaptive mechanisms for conditions of high protein demand, marked by an accumulation of misfolded proteins in the endoplasmic reticulum (ER). Rheumatic autoimmune diseases (RAD) are known to be associated with chronic inflammation and an ERS state. However, the activation of UPR signaling pathways is not completely understood in Sjögren's disease (SD).

View Article and Find Full Text PDF

A smart responsive NIR-operated chitosan-based nanoswitch to induce cascade immunogenic tumor ferroptosis via cytokine storm.

Carbohydr Polym

March 2025

College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China. Electronic address:

In this work we present a near-infrared (NIR)-operated nanoswitch based on chitosan nanoparticles (EpCAM-CS-co-PNVCL@IR780/IMQ NPs) that induces cascade immunogenic tumor ferroptosis via cytokine storm. The formulation was prepared by loading a photosensitiser (IR780) and an immunotherapeutic drug (imiquimod; IMQ) into temperature- and pH-responsive chitosan-based NPs functionalized with tumor-targeting aptamers. The EpCAM aptamer can chaperone the NPs selectively into cancer cells, and allow them to enter the cell nucleus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!