Heterozygous POLE or POLD1 germline pathogenic variants (PVs) cause polymerase proofreading associated polyposis (PPAP), a constitutional polymerase proofreading deficiency that typically presents with colorectal adenomas and carcinomas in adulthood. Constitutional mismatch-repair deficiency (CMMRD), caused by germline bi-allelic PVs affecting one of four MMR genes, results in a high propensity for the hematological, brain, intestinal tract, and other malignancies in childhood. Nonmalignant clinical features, such as skin pigmentation alterations, are found in nearly all CMMRD patients and are important diagnostic markers. Here, we excluded CMMRD in three cancer patients with highly suspect clinical phenotypes but identified in each a constitutional heterozygous POLE PV. These, and two additional POLE PVs identified in published CMMRD-like patients, have not previously been reported as germline PVs despite all being well-known somatic mutations in hyper-mutated tumors. Together, these five cases show that specific POLE PVs may have a stronger "mutator" effect than known PPAP-associated POLE PVs and may cause a CMMRD-like phenotype distinct from PPAP. The common underlying mechanism, that is, a constitutional replication error repair defect, and a similar tumor spectrum provide a good rationale for monitoring these patients with a severe constitutional polymerase proofreading deficiency according to protocols proposed for CMMRD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/humu.24299 | DOI Listing |
J Virol
January 2025
Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Coronaviruses (CoVs) encode non-structural proteins (nsp's) 1-16, which assemble to form replication-transcription complexes that function in viral RNA synthesis. All CoVs encode a proofreading 3'-5' exoribonuclease in non-structural protein 14 (nsp14-ExoN) that mediates proofreading and high-fidelity replication and is critical for other roles in replication and pathogenesis. The enzymatic activity of nsp14-ExoN is enhanced in the presence of the cofactor nsp10.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland.
Tt72 DNA polymerase is a newly characterized PolA-type thermostable enzyme derived from the phage vB_Tt72. The enzyme demonstrates strong 3'→5' exonucleolytic proofreading activity, even in the presence of 1 mM dNTPs. In this study, we examined how the exonucleolytic activity of Tt72 DNA polymerase affects the fidelity of DNA synthesis.
View Article and Find Full Text PDFLife (Basel)
November 2024
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia.
DNA polymerases from the hyperthermophilic Archaea have attracted considerable attention as PCR enzymes due to their high thermal stability and proofreading 3' → 5' exonuclease activity. This study is the first to report data concerning the purification and biochemical characteristics of the Tst DNA polymerase from . Both the wild type Tst(wt) DNA polymerase and its chimeric form containing the P36H substitution-which reduces the enzyme's affinity for the U-containing template and dUTP-and the DNA-binding domain Sso7d from were obtained and analyzed.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden.
Aberration of mitochondrial function is a shared feature of many human pathologies, characterised by changes in metabolic flux, cellular energetics, morphology, composition, and dynamics of the mitochondrial network. While some of these changes serve as compensatory mechanisms to maintain cellular homeostasis, their chronic activation can permanently affect cellular metabolism and signalling, ultimately impairing cell function. Here, we use a Drosophila melanogaster model expressing a proofreading-deficient mtDNA polymerase (POLγ) in a genetic screen to find genes that mitigate the harmful accumulation of mtDNA mutations.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029.
SARS coronavirus 2 (SARS-CoV-2) non-structural protein 14 (Nsp14) possesses an N-terminal exonuclease (ExoN) domain that provides a proofreading function for the viral RNA-dependent RNA polymerase and a C-terminal N7-methyltransferase (N7-MTase) domain that methylates viral mRNA caps. Nsp14 also modulates host functions. This includes the activation of NF-κB and downregulation of interferon alpha/beta receptor 1 (IFNAR1).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!