Aiming to develop the facile organic fluorophore possessing excited state intramolecular proton transfer (ESIPT) and aggregation-induced emission (AIE), we designed and synthesized two isomers with different linkage site between hydroxyl of 2-(2-hydroxyphenyl) benzothiazole (HBT) and a benzothiazole substituent (para position refers to p-BHBT and ortho position refers to o-BHBT). Fluorescence emission properties of p-BHBT and o-BHBT in THF/water mixtures with different water volume fractions indicated an opposite luminescence in aggregates, in which p-BHBT showed an ESIPT-dependent AIE properties while o-BHBT displayed ESIPT effect and aggregation-caused quenching (ACQ) qualities. A possible mechanism for molecular actions to illustrate the aggregating luminescence alteration of these two isomers had been proposed and verified by theoretical and experimental studies. More importantly, Probe-1, generated from dual ESIPT-AIE fluorophore p-BHBT, was successfully used as a ratiometric fluorescent chemosensor for highly selective (above 15-fold over other ROS) and sensitive (69-fold fluorescence enhancement with 0.22 μM of detection limit) detection of hydrogen peroxide in aqueous solution and living cells, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202103241 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!