The utilization of various feedstocks of unique characteristics in producing biogas could potentially enhance the application of clean fuel from biomass wastes. Two modelling tools were used to explore biogas production from plant and animal wastes. In this study, corn chaff was inoculated with cow dung digestate using different mixing ratios of substrate/inoculum (S/I) of 1:1, 1:1.55, and 1:3.5 for hydraulic retention time (HRT) of 25, 31, and 37 days as modelled using Central Composite Design (Face Centered Design) to optimize the process and predict the optimal response. The result shows that the mixture ratio of 1:1.55 for 37 days gave a cumulative highest biogas yield of 6.19 L under mesophilic conditions. The model p-value is <0.0001, an indication that the model term is significant. The python coding of the input factors gave the optimal value of 4.71 L, which is similar to the result obtained via CCD. Thus, both CCD (Face Centered Design) and python coding are reliable in the optimization of biogas production as they both predicted the same optimal values and approximately the same highest cumulative biogas yield. The GC-MS characterization of produced biogas revealed that it contains 68% methane and 22.76% CO. Other constituents present are confirmed by FTIR analysis results. The methane in produced biogas has a flashpoint of -182 °C, which is extremely flammable. This data shows that both CCD and python coding can model biogas production with high accuracy and biogas produced can be used for heating purposes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8593443 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2021.e08255 | DOI Listing |
Environ Res
January 2025
Thermochemical Processes Group, Aragón Institute for Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 50.018, Zaragoza, Spain. Electronic address:
This work explores the synergies between N-rich (Chlorella pyrenoidosa) and N-deficient (Undaria pinnatifida) macroalgae for the production of N-containing hydrochar and solid biofuels via co-hydrothermal carbonization (co-HTC). The impact of the feedstock (each alga alone and all possible binary mixtures) was comprehensively assessed under different temperatures (180-260 °C) and times (60-240 min). The synergies between micro and macroalgae governed product distribution, nitrogen transformation pathways, and hydrochar quality, with these effects varying by processing conditions.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China; School of Emergency Management, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China. Electronic address:
The biomethanation process is widely recognized as a significant approach to mitigating carbon dioxide emissions while simultaneously generating methane. However, only a few microorganisms that required intricate culturing conditions were identified for biomethanation. Here, Escherichia coli that featured easy cultivation and versatile chassis was genetically modified for biomethanation for the first time.
View Article and Find Full Text PDFThe present study demonstrates the significance of the C/N ratio and double helical ribbon (DHR) impeller in the anaerobic co-digestion (AnCo-D) of sugar refining process (SRP) effluent and molasses-based distillery spent wash (DSW) for improved biogas production. Both SRP & DSW were mixed in different percentages to achieve an optimum C/N ratio. Further biomethane potential analysis of mixed feeds with different C/N ratios was performed.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China.
Application of biogas slurry (BS) can promote ammonia (NH) volatilization. Algae sludge and Quercus acutissima leaves are rich in resources and nutrients, and can be effectively converted into valuable products. Hydrothermal carbonization technology (HTC) is a sustainable method for the treatment of wet biomass.
View Article and Find Full Text PDFSci Rep
January 2025
Process and Energy Department, University of Technology of Delft, Leeghwaterstraat 39, 2628 CB, Delft, The Netherlands.
An urgent ecological issue is the threat posed by invasive species, which are becoming more widespread especially in Africa. These encroachments damage ecosystems, pose a threat to biodiversity, and outcompete local plants and animals. This article focuses on converting Acacia Mellifera from Namibia, commonly known as encroacher bush (EB) into high-quality drop-in intermediates for the chemical and transport industry via hydrothermal liquefaction (HTL).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!