The mountains of subtropical China are an excellent system for investigating the processes driving the geographical distribution of biodiversity and radiation of plant populations in response to Pleistocene climate fluctuations. How the major mountain ranges in subtropical China have affected the evolution of plant species in the subtropical evergreen broadleaved forest is an issue with long-term concern. Here, we focused on , a woody species endemic to the southern mountain ranges in subtropical China, to elucidate its population dynamics. We used genotyping by sequencing (GBS) to investigate the spatial pattern of genetic variation among 11 populations. Geographical isolation was detected between the populations located in adjacent mountain ranges, thought to function as geographical barriers due to their complex physiography. Bayesian time estimation revealed that population divergence occurred in the middle Pleistocene, when populations in the Nanling Mts. separated from those to the east. The orientation and physiography of the mountain ranges of subtropical China appear to have contributed to the geographical pattern of genetic variation between the eastern and western populations of . . Complex physiography plus long-term stable ecological conditions across glacial cycles facilitated the demographic expansion in the Nanling Mts., from which contemporary migration began. The Nanling Mts. are thus considered as a suitable area for preserving population diversity and large population sizes of . compared with other regions. As inferred by ecological niche modeling and coalescent simulations, secondary contact occurred during the warm Lushan-Tali Interglacial period, with intensified East Asia summer monsoon and continuous habitat available for occupation. Our data support the strong influence of both climatic history and topographic characteristics on the high regional phytodiversity of the subtropical evergreen broadleaved forest in subtropical China.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8591333 | PMC |
http://dx.doi.org/10.1111/eva.13301 | DOI Listing |
Environ Sci Technol
January 2025
Department of Environmental and Resource Engineering, Technical University of Denmark, DTU Risø Campus, DK-4000 Roskilde, Denmark.
U and U are proven to be useful tracers to investigate upper-ocean hydrodynamics due to their source-specific isotopic ratios and conservative behaviors in the open ocean. However, their application in the Pacific Ocean has been limited by scarce observations and unclear source-term information. Here, we present our observations of U and U in the western North Pacific Subtropical Gyre (NPStG), showing the presence of a source of anthropogenic U featured by a low U/U ratio (∼1 × 10), which is an order of magnitude lower than the global fallout signature (∼2 × 10).
View Article and Find Full Text PDFBMC Genomics
January 2025
State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
Background: Populus tomentosa, known as Chinese white poplar, is indigenous and distributed across large areas of China, where it plays multiple important roles in forestry, agriculture, conservation, and urban horticulture. However, limited accessibility to the mitochondrial (mt) genome of P. tomentosa impedes phylogenetic and population genetic analyses and restricts functional gene research in Salicaceae family.
View Article and Find Full Text PDFNat Commun
January 2025
Interdisciplinary Science Center, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
Fluorogenic RNA aptamers have various applications, including use as fluorescent tags for imaging RNA trafficking and as indicators of RNA-based sensors that exhibit fluorescence upon binding small-molecule fluorophores in living cells. Current fluorogenic RNA:fluorophore complexes typically emit visible fluorescence. However, it is challenging to develop fluorogenic RNA with near-infrared (NIR) fluorescence for in vivo imaging and sensing studies.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
Copper (Cu), a trace element with redox activity, is both essential and toxic to living organisms. Its redox properties make it a cofactor for a variety of proteins, but it also causes oxidative stress, hence the need to maintain intracellular copper homeostasis. However, the role of copper in the regulation of antioxidant defense in bacteria remains unclear, and the involved transcription factors remain to be explored.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China. Electronic address:
Soil cadmium (Cd) pollution is a serious ecological problem worldwide. Understanding Cd-detoxification mechanisms in woody plants will help to evaluate their tolerance ability and phytoremediation potential to Cd-polluted soils. This study investigated the growth, physiochemistry, Cd distribution, and transcriptome sequencing of male and female poplars under three Cd levels (0, 50, and 100 mg·kg).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!