Many organizations are increasingly investing in building dynamic capabilities to gain competitive advantage. New products play an important role in gaining competitive advantage and can significantly boost organizational performance. Although new product development (NPD) is widely recognized as a potentially vital source of competitive advantage, organizations face challenges in terms of developing the right antecedents or capabilities to influence NPD performance. Our research suggests that organizations should invest in building alliance management capability (AMC), big data analytics capability (BDAC) and information visibility (IV) to achieve their desired NPD success. Informed by the dynamic capabilities view of the firm (DCV) we have stated seven research hypotheses. We further tested our hypotheses using 219 usable respondents gathered using a pre-tested instrument. The hypotheses were tested using variance based structural equation modelling (PLS-SEM). The results of our study paint an interesting picture. Our study makes some significant contribution to the DCV and offers some useful directions to practitioners engaged in NPD in the big data analytics era. We demonstrate that AMC and BDAC are lower-order dynamic capabilities and that AMC has a positive and significant influence on BDAC. In turn, AMC and BDAC influence NPD under the moderating influence of IV. Ours is one of the first studies to empirically establish an association among three distinct dynamic capabilities which are often considered in isolation: AMC, BDAC and NPD. Our findings support emergent views on dynamic capabilities and their classification into various orders. Lastly, we provide empirical evidence that information visibility acts as a contingent variable to both AMC and BDAC effects on NPD. We end our paper by outlining some limitations of our study and by offering useful future research directions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8603340 | PMC |
http://dx.doi.org/10.1007/s10479-021-04390-9 | DOI Listing |
JACS Au
January 2025
Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy.
Naturally occurring photoenzymes are rare in nature, but among them, fatty acid photodecarboxylases derived from (FAPs) have emerged as promising photobiocatalysts capable of performing the redox-neutral, light-induced decarboxylation of free fatty acids (FAs) into C1-shortened alka(e)nes. Using a hybrid QM/MM approach combined with a polarizable embedding scheme, we identify the structural changes of the active site and determine the energetic landscape of the forward electron transfer (fET) from the FA substrate to the excited flavin adenine dinucleotide. We obtain a charge-transfer diradical structure where a water molecule rearranges spontaneously to form a H-bond interaction with the excited flavin, while the FA's carboxylate group twists and migrates away from it.
View Article and Find Full Text PDFElectronics (Basel)
December 2024
Department of Mechanical Engineering, City College of New York, New York, NY 10031, USA.
Cardiovascular disease is a leading cause of death worldwide. The differentiation of human pluripotent stem cells (hPSCs) into functional cardiomyocytes offers significant potential for disease modeling and cell-based cardiac therapies. However, hPSC-derived cardiomyocytes (hPSC-CMs) remain largely immature, limiting their experimental and clinical applications.
View Article and Find Full Text PDFMalar J
January 2025
MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France.
Background: The increasing availability of electronic health system data and remotely-sensed environmental variables has led to the emergence of statistical models capable of producing malaria forecasts. Many of these models have been operationalized into malaria early warning systems (MEWSs), which provide predictions of malaria dynamics several months in advance at national and regional levels. However, MEWSs rarely produce predictions at the village-level, the operational scale of community health systems and the first point of contact for the majority of rural populations in malaria-endemic countries.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX, 78249, USA.
The inherently stochastic nature of radiation emissions makes modeling background radiation structure a particularly challenging research area. In source identification scenarios, which are critical to nuclear security, the complexity of background radiation modeling is intensified by dynamically changing factors that influence radiation measurements. Consequently, accurately modeling and estimating background radiation can significantly improve our nuclear security capabilities by enhancing the detection of anomalies within radiation data.
View Article and Find Full Text PDFNat Commun
January 2025
Olivia Newton-John Cancer Research Institute, Heidelberg, Melbourne, Australia.
Cas12a is a next-generation gene editing tool that enables multiplexed gene targeting. Here, we present a mouse model that constitutively expresses enhanced Acidaminococcus sp. Cas12a (enAsCas12a) linked to an mCherry fluorescent reporter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!