A new instrument is required to accommodate the need for increased portability and accuracy in laser power measurement above 100 W. Reflection and absorption of laser light provide a measurable force from photon momentum exchange that is directly proportional to laser power, which can be measured with an electrostatic balance traceable to the SI. We aim for a relative uncertainty of 10 with coverage factor = 2. For this purpose, we have designed a monolithic parallelogram 4-bar linkage incorporating elastic circular notch flexure hinges. The design is optimized to address the main factors driving force measurement uncertainty from the balance mechanism: corner loading errors, balance stiffness, stress in the flexure hinges, sensitivity to vibration, and sensitivity to thermal gradients. Parasitic rotations in the free end of the 4-bar linkage during arcuate motion are constrained by machining tolerances. An analytical model shows this affects the force measurement less than 0.01 percent. Incorporating an inverted pendulum reduces the stiffness of the system without unduly increasing tilt sensitivity. Finite element modeling of the flexures is used to determine the hinge orientation that minimizes stress which is therefore expected to minimize hysteresis. Thermal effects are mitigated using an external enclosure to minimize temperature gradients, although a quantitative analysis of this effect is not carried out. These analyses show the optimized mechanism is expected to contribute less than 1 × 10 relative uncertainty in the final laser power measurement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8607349 | PMC |
http://dx.doi.org/10.1109/tim.2021.3060575 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!