Atomically precise electronics operating at optical frequencies require tools that can characterize them on their intrinsic length and time scales to guide device design. Lightwave-driven scanning tunnelling microscopy is a promising technique towards this purpose. It achieves simultaneous sub-ångström and sub-picosecond spatio-temporal resolution through ultrafast coherent control by single-cycle field transients that are coupled to the scanning probe tip from free space. Here, we utilize lightwave-driven terahertz scanning tunnelling microscopy and spectroscopy to investigate atomically precise seven-atom-wide armchair graphene nanoribbons on a gold surface at ultralow tip heights, unveiling highly localized wavefunctions that are inaccessible by conventional scanning tunnelling microscopy. Tomographic imaging of their electron densities reveals vertical decays that depend sensitively on wavefunction and lateral position. Lightwave-driven scanning tunnelling spectroscopy on the ångström scale paves the way for ultrafast measurements of wavefunction dynamics in atomically precise nanostructures and future optoelectronic devices based on locally tailored electronic properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8611099PMC
http://dx.doi.org/10.1038/s41467-021-26656-3DOI Listing

Publication Analysis

Top Keywords

scanning tunnelling
20
atomically precise
16
lightwave-driven scanning
12
tunnelling microscopy
12
tunnelling spectroscopy
8
graphene nanoribbons
8
tunnelling
5
scanning
5
lightwave-driven
4
atomically
4

Similar Publications

A non-destructive method for three-dimensional characterizing plateau pika's burrow system.

J Environ Manage

March 2025

School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China. Electronic address:

The plateau pika's burrow system exerts a significant influence on the alpine ecosystem. However, current methods are insufficient for accurately characterizing its spatial structure. In this study, we utilized drone imagery and ground-penetrating radar (GPR) scanning in alpine grasslands on the eastern edge of the Qinghai-Tibetan Plateau (QTP).

View Article and Find Full Text PDF

Mechanistic Insights into Regioselectivity and Its Evolution in On-Surface Polymerization.

J Am Chem Soc

March 2025

CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Surface-catalyzed polymerization is crucial in both chemical science and industrial manufacturing, yet achieving regioselective radical polymerization on the surface remains challenging. Here, we demonstrate the regioselective Ullmann polymerization of nonsymmetrical 2,8-dibromoquinoline (DBQ) on an Au(111) surface. By combining scanning tunneling microscopy, density functional theory calculations, and kinetic modeling, we reveal the regioselectivity and its evolution with surface temperature at the molecular level.

View Article and Find Full Text PDF

N-Heterocyclic carbenes are highly effective ligands for anchoring functional organic molecules to metal surfaces and nanoparticles, facilitating the formation of self-assembled monolayers. However, their adsorption on surface is difficult to predict and control, and there is an ongoing debate on the geometry of NHC derivatives on gold surfaces and on the role of gold adatoms. We present two single molecules based on a benzimidazole NHC, one equipped with a thiophene substituent, and the other ending with a Br atom.

View Article and Find Full Text PDF

Room-Temperature Synthesis of Carbon Nanochains via the Wurtz Reaction.

Nanomaterials (Basel)

March 2025

Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.

In the field of surface synthesis, various reactions driven by the catalytic effect of metal substrates, particularly the Ullmann reaction, have been thoroughly investigated. The Wurtz reaction facilitates the coupling of alkyl halides through the removal of halogen atoms with a low energy barrier on the surface; however, the preparation of novel carbon nanostructures via the Wurtz reaction has been scarcely reported. Here, we report the successful synthesis of ethyl-bridged binaphthyl molecular chains on Ag(111) at room temperature via the Wurtz reaction.

View Article and Find Full Text PDF

Schottky diodes have been a fundamental component of electrical circuits for many decades, and intense research continues to this day on planar materials with increasingly exotic compounds. With the birth of nanotechnology, a paradigm shift occurred with Schottky contacts proving to be essential for enabling nanodevice inventions and increasing their performance by many orders of magnitude, particularly in the fields of piezotronics and piezoelectric energy harvesting. ZnO nanomaterials have proven to be the most popular materials in those devices as they possess high piezoelectric coefficients, high surface sensitivity, and low resistivity due to the high native n-type doping and low hole concentration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!