Protein S-nitrosylation is one of the most important post-translational modifications, a well-grounded understanding of S-nitrosylation is very significant since it plays a key role in a variety of biological processes. For an uncharacterized protein sequence, it is a very meaningful problem for both basic research and drug development when we can firstly identify whether it is a S-nitrosylation protein or not, and then predict the specific S-nitrosylation site(s). This work has proposed two models for identifying S-nitrosylation protein and its PTM sites. Firstly, three kinds of features are extracted from protein sequence: KNN scoring of functional domain annotation, PseAAC and bag-of-words based on the physical and chemical properties of amino acids. Secondly, the synthetic minority oversampling technique is used to balance the data sets, and some state-of-the-art classifiers and feature fusion strategies are performed on the balanced data sets. In the five-fold cross-validation for predicting S-nitrosylation proteins, the results of Accuracy (ACC), Matthew's correlation coefficient (MCC) and area under ROC curve (AUC) are 81.84%, 0.5178, 0.8635, respectively. Finally, a model for predicting S-nitrosylation sites has been constructed on the basis of tripeptide composition (TPC) and the composition of k-spaced amino acid pairs (CKSAAP). To eliminate redundant information and improve work efficiency, elastic nets are employed for feature selection. The five-fold cross-validation tests have indicated the promising success rates of the proposed model. For the convenience of related researchers, the web-server named "RF-SNOPS" has been established at http://www.jci-bioinfo.cn/RF-SNOPS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3934/mbe.2021450 | DOI Listing |
Plants (Basel)
December 2024
College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
The plant hormone ethylene elicits crucial regulatory effects on plant growth, development, and stress resistance. As the enzyme that catalyzes the final step of ethylene biosynthesis, 1-Aminocyclopropane-1-carboxylic acid oxidase (ACO) plays a key role in precisely controlling ethylene production. However, the functional characterization of the gene family in rice remains largely unexplored.
View Article and Find Full Text PDFMethods Mol Biol
November 2024
Computer Science Department, Rochester Institute of Technology, Rochester, NY, USA.
Protein post-translational modifications (PTMs) introduce new functionalities and play a critical role in the regulation of protein functions. Characterizing these modifications, especially PTM sites, is essential for unraveling complex biological systems. However, traditional experimental approaches, such as mass spectrometry, are time-consuming and expensive.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, Toledo, Ohio, USA; Department of Medicine, MetroHealth Medical Center, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA. Electronic address:
Transforming Growth Factor β (TGFβ) is a pleiotropic cytokine closely linked to tumors. Previously, we pharmacologically inhibited basal nitric oxide (NO) production in healthy mammary glands and found that this induced precancerous progression accompanied by upregulation of TGFβ and desmoplasia. In the present study, we tested whether NO directly S-nitrosylates (forms an NO-adduct at a cysteine residue) TGFβ for inhibition, whereas reduction of NO denitrosylates TGFβ for de-repression.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2024
Fundación Instituto Leloir, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires 1405, Argentina.
BMC Plant Biol
October 2024
Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!