The aim of this work is the preliminary clinical validation and accuracy evaluation of our automatic algorithms in assessing progression fetal femur length (FL) in ultrasound images. To compare the random forest regression model with the SegNet model from the two aspects of accuracy and robustness. In this study, we proposed a traditional machine learning method to detect the endpoints of FL based on a random forest regression model. Deep learning methods based on SegNet were proposed for the automatic measurement method of FL, which utilized skeletonization processing and improvement of the full convolution network. Then the automatic measurement results of the two methods were evaluated quantitatively and qualitatively with the results marked by doctors. 436 ultrasonic fetal femur images were evaluated by the two methods above. Compared the results of the above three methods with doctor's manual annotations, the automatic measurement method of femur length based on the random forest regression model was 1.23 ± 4.66 mm and the method based on SegNet was 0.46 ± 2.82 mm. The indicator for evaluating distance was significantly lower than the previous literature. Measurement method based SegNet performed better in the case of femoral end adhesion, low contrast, and noise interference similar to the shape of the femur. The segNet-based method achieves promising performance compared with the random forest regression model, which can improve the examination accuracy and robustness of the measurement of fetal femur length in ultrasound images.

Download full-text PDF

Source
http://dx.doi.org/10.3934/mbe.2021387DOI Listing

Publication Analysis

Top Keywords

random forest
20
forest regression
20
regression model
20
automatic measurement
16
fetal femur
16
femur length
16
length ultrasound
12
ultrasound images
12
based segnet
12
measurement method
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!