Principal stress lines based design method of lightweight and low vibration amplitude gear web.

Math Biosci Eng

School of Mechanical Engineering, Shandong University, Jinan 250061, China.

Published: August 2021

A lightweight and low vibration amplitude web design method was investigated to reduce gear weight and noise. It was based upon the relationship between length and orthogonality that the principal stress lines were designed at the gear web. By constructing a vibration control model with gear design parameters, the optimal distance was calculated. By offsetting the principal stress lines at the optimal distance, the lightweight gear web with the low vibration amplitude was then generated. A vibration experimental platform was built to verify the novel gear vibration performances, and it was compared with other gears with the same web's porosity to verify loading performance. The experimental results indicated that compared with the solid gear, the novel gear is 20.50% lighter and with a 29.46% vibration amplitude reduction.

Download full-text PDF

Source
http://dx.doi.org/10.3934/mbe.2021351DOI Listing

Publication Analysis

Top Keywords

vibration amplitude
16
principal stress
12
stress lines
12
low vibration
12
gear web
12
design method
8
lightweight low
8
gear
8
optimal distance
8
novel gear
8

Similar Publications

Based on a prototype of the Beijing subway tunnel, this research conducts large-scale model experiments to systematically investigate the vibration response patterns of tunnels with different damage levels under the influence of measured train loads. Initially, the polynomial fitting modal identification method (Levy) and the model test preparation process are introduced. Then, using time-domain peak acceleration, frequency response function, frequency-domain modal frequency, and modal shape indicators, a detailed analysis of the tunnel's dynamic response is conducted.

View Article and Find Full Text PDF

A novel design for double-bending elliptical vibration boring device and its performance evaluation.

Ultrasonics

January 2025

State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China.

Steel precision matching parts are widely used in aerospace and automobiles. In order to ensure the stability of the system, the matching parts' mating surfaces, such as inner holes and outer shafts, are required to achieve nano-surface roughness and submicron-shape accuracy. Diamond-cutting technology is generally used for ultra-precision machining processes.

View Article and Find Full Text PDF

Field switching of microfabricated metamagnetic FeRh MRI contrast agents.

Sci Rep

January 2025

Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.

In a step towards generating switchable MRI cellular labels, we demonstrate in-situ field switching of micron scale metamagnetic Iron-Rhodium (FeRh) thin film particles. A thin-film (200 nm) FeRh sample was fabricated and patterned into an array of progressively smaller squares with sizes ranging from 500 μm down to 1 μm. The large first order phase change from antiferromagnetic to ferromagnetic state was characterized using vibrating sample magnetometry, magnetic force microscopy, and MRI.

View Article and Find Full Text PDF

Theoretical modeling and modal analysis of multi-element coupled transducers.

J Acoust Soc Am

January 2025

National Key Laboratory of Underwater Acoustic Technology, Harbin Engineering University, Harbin 150001, China.

Low-frequency transducers are considerably smaller than the wavelength. When multiple low-frequency transducers are closely packed, they couple with the surrounding water and form a transducer-water-transducer coupling structure called multi-element coupled transducers (MCT). This study presents a theoretical model of the MCT based on radiation and mutual radiation theory and analyzes it under multiple resonance frequencies and vibration modes.

View Article and Find Full Text PDF

Understanding the role of structural and environmental dynamics in the excited state properties of strongly coupled chromophores is of paramount importance in molecular photonics. Ultrafast, coherent, and multidimensional spectroscopies have been utilized to investigate such dynamics in the simplest model system, the molecular dimer. Here, we present a half-broadband two-dimensional electronic spectroscopy (HB2DES) study of the previously reported ultrafast symmetry-breaking charge separation (SB-CS) in the subphthalocyanine oxo-bridged homodimer μ-OSubPc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!