Introduction: The present study deals with the synthesis of pregnane-oximino-amino-alkyl-ethers and their evaluation for antidiabetic and anti-dyslipidemic activities in validated animal and cell culture models.

Methods: The effect on glucose tolerance was measured in sucrose-loaded rats; antidiabetic activity was evaluated in streptozotocin (STZ)-induced diabetic rats and genetically diabetic db/db mice; the anti-dyslipidemic effect was characterized in high-fructose, high-fat diet (HFD)-fed dyslipidemic hamsters. The effect on glucose production and glucose utilization was analyzed in HepG2 liver and L6 skeletal muscle cells, respectively.

Results: From the synthesized molecules, pregnane-oximino-amino-alkyl-ether (compound 14b) improved glucose clearance in sucrose-loaded rats and exerted antihyperglycemic activity on STZ-induced diabetic rats. Further evaluation in genetically diabetic db/db mice showed temporal decrease in blood glucose, and improvement in glucose tolerance and lipid parameters, associated with mild improvement in the serum insulin level. Moreover, compound 14b treatment displayed an anti-dyslipidemic effect characterized by significant improvement in altered lipid parameters of the high-fructose, HFD-fed dyslipidemic hamster model. In vitro analysis in the cellular system suggested that compound 14b decreased glucose production in liver cells and stimulated glucose utilization in skeletal muscle cells. These beneficial effects of compound 14b were associated with the activation of the G-protein-coupled bile acid receptor TGR5.

Conclusion: Compound 14b exhibits antidiabetic and anti-dyslipidemic activities through activating the TGR5 receptor system and can be developed as a lead for the management of type II diabetes and related metabolic complications.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000519721DOI Listing

Publication Analysis

Top Keywords

compound 14b
20
antidiabetic anti-dyslipidemic
12
anti-dyslipidemic activities
12
tgr5 receptor
8
glucose
8
glucose tolerance
8
sucrose-loaded rats
8
stz-induced diabetic
8
diabetic rats
8
genetically diabetic
8

Similar Publications

3,4-Dimethylaniline (3,4-DMA) is present in cigarette smoke and widely used as an intermediate in dyes, drugs, and pesticides. Nucleotide excision repair-deficient Chinese hamster ovary (CHO) cells stably transfected with human CYP1A2 and N-acetyltransferase 1 (NAT1) alleles: (reference allele) or (the most common variant allele) were utilized to assess 3,4-DMA -acetylation and hypoxanthine phosphoribosyl transferase (HPRT) mutations, double-strand DNA breaks and reactive oxygen species (ROS). CHO cells expressing exhibited significantly ( < 0.

View Article and Find Full Text PDF

Background: Changan Granule (CAG) is a drug product developed from a traditional Chinese medicine (TCM) empirical prescription for diarrhea-predominant irritable bowel syndrome (IBS-D). The action mechanism and effective compounds of CAG in the treatment of IBS-D are not well understood.

Purpose: This study aimed to investigate the effectiveness, action mechanism and effective compounds of CAG for treating IBS-D.

View Article and Find Full Text PDF

Early trigeminal and sensory impairment and lysosomal dysfunction in accurate models of Wolfram syndrome.

Exp Neurol

December 2024

Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia. Electronic address:

Wolfram syndrome (WS) is a rare condition caused by homozygous or compound heterozygous mutations in the WFS1 gene primarily. It is diagnosed on the basis of early-onset diabetes mellitus and optic nerve atrophy. Patients complain of trigeminal-like migraines and show deficits in vibration sensation, but the underlying cause is unknown.

View Article and Find Full Text PDF

Structure-Activity Relationships and Molecular Pharmacology of Positive Allosteric Modulators of the Mu-Opioid Receptor.

ACS Chem Neurosci

January 2025

Edward F Domino Research Center, Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States.

Positive allosteric modulation of the mu-opioid receptor is a promising strategy to address the ever-growing problem of acute and chronic pain management. Positive allosteric modulators (PAMs) of the mu-opioid receptor could be employed to enhance the efficacy of endogenous opioid peptides to a degree that provides pain relief without the need for traditional opioid drugs. Alternatively, PAMs might be used to enhance the action of opioid drugs and so provide an opioid-sparing effect, allowing for the use of lower doses of opioid agonists and potentially decreasing associated side effects.

View Article and Find Full Text PDF

Design and synthesis of novel benzoic acid derivatives as striatal-enriched protein tyrosine phosphatase (STEP) inhibitors with neuroprotective properties.

Eur J Med Chem

February 2025

Department of Medicinal Chemistry and Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Normal University, Guilin, 541004, China. Electronic address:

As a central nervous system-specific member of the protein tyrosine phosphatase (PTP) family, the striatal-enriched protein tyrosine phosphatase (STEP) is an attractive drug target for neurodegenerative diseases. Here, we reported the discovery of a series of benzoic acid derivatives as new STEP inhibitors. Among them, compound 14b exhibited good STEP inhibitory activity and displayed selectivity against other PTPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!