The rostral half of the ventrolateral medulla (RVLM) and adjacent ventrolateral retropontine region (henceforth RVLMRP) have been divided into various sectors by neuroscientists interested in breathing or autonomic regulations. The RVLMRP regulates respiration, glycemia, vigilance and inflammation, in addition to blood pressure. It contains interoceptors that respond to acidification, hypoxia and intracranial pressure and its rostral end contains the retrotrapezoid nucleus (RTN) which is the main central respiratory chemoreceptor. Acid detection by the RTN is an intrinsic property of the principal neurons that is enhanced by paracrine influences from surrounding astrocytes and CO-dependent vascular constriction. RTN mediates the hypercapnic ventilatory response via complex projections to the respiratory pattern generator (CPG). The RVLM contributes to autonomic response patterns via differential recruitment of several subtypes of adrenergic (C1) and non-adrenergic neurons that directly innervate sympathetic and parasympathetic preganglionic neurons. The RVLM also innervates many brainstem and hypothalamic nuclei that contribute, albeit less directly, to autonomic responses. All lower brainstem noradrenergic clusters including the locus coeruleus are among these targets. Sympathetic tone to the circulatory system is regulated by subsets of presympathetic RVLM neurons whose activity is continuously restrained by the baroreceptors and modulated by the respiratory CPG. The inhibitory input from baroreceptors and the excitatory input from the respiratory CPG originate from neurons located in or close to the rhythm generating region of the respiratory CPG (preBötzinger complex).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.autneu.2021.102922 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!