Although linear accelerators are used in many security, industrial and medical applications, the existing technologies are too large and expensive for several critical applications such as radioactive source replacement, field radiography and mobile cargo scanners. One of the main requirements for these sources is to be highly portable to allow field operation. In response to this problem, RadiaBeam has designed a hand-portable 1 MeV X-ray source, scalable to higher energies, based on Ku-band split electron linac, that can be used for Ir-192 radioisotope replacement. In this paper, we present its multiphysics and engineering design studies, as well as an accelerating structure prototype along with RF measurements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.apradiso.2021.110029 | DOI Listing |
J Contemp Brachytherapy
June 2024
Department of Medical Physics, German Oncology Center, University Hospital of the European University, Limassol, Cyprus.
Purpose: The aim of this study was a retrospective dosimetric comparison of iridium-192 (Ir) high-dose-rate (HDR) interstitial brachytherapy plans using model-based dose calculation algorithm (MBDCA) following TG-186 recommendations and TG-43 dosimetry protocol for breast, head-and-neck, and lung patient cohorts, with various treatment concepts and prescriptions.
Material And Methods: In this study, 59 interstitial Ir HDR brachytherapy cases treated in our center (22 breast, 22 head and neck, and 15 lung) were retrospectively selected and re-calculated with TG-43 dosimetry protocol as well as with Acuros BV dose calculation algorithm, with dose to medium option based on computed tomography images. Treatment planning dose volume parameter differences were determined and their significance was assessed.
J Contemp Brachytherapy
August 2024
Department of Radiation Oncology, Indraprastha Apollo Hospital, New Delhi, India.
Purpose: The present study evaluated the dosimetric impact and compared the dose variations between the advanced collapsed cone engine (Task Group 186) and Task Group 43 plans for cervical cancer using tandem and ovoid applicators.
Material And Methods: Thirty cervical cancer patients underwent iridium-192 (Ir) high-dose-rate (HDR) intra-cavitary brachytherapy using tandem and ovoid applicator. Original treatment plans for all patients were created using TG-43 dose calculation formalism.
J Contemp Brachytherapy
August 2024
Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi, India.
Purpose: For cervical cancer patients, intra-cavitary brachytherapy (ICBT) is utilized with various dose-rate systems, such as low-dose-rate (LDR), high-dose-rate (HDR), and pulsed-dose-rate (PDR). This retrospective analysis aimed to compare the therapeutic outcomes of cervical cancer patients treated with either LDR-, HDR-, or PDR-ICBT.
Material And Methods: A total of 613 patients were treated with pelvic external beam radiation therapy (EBRT), followed by either LDR- (271 patients), HDR- (259 patients), or PDR- (83 patients) ICBT.
J Contemp Brachytherapy
August 2024
Department of Oncology and Radiotherapy, University Clinical Centre in Gdan,sk, Gdan,sk, Poland.
A case report of non-classical treatment choice for mycosis fungoides (MF) presented on the left upper eyelid and forehead. Superficial brachytherapy using 3D technique was prescribed to preserve the lens's functionality, and successfully eliminate malignant lesion. Treatment was conducted with high-dose-rate (HDR) brachytherapy using iridium-192 (Ir) source as a base and Flexitron device as an afterloader.
View Article and Find Full Text PDFJ Radioanal Nucl Chem
October 2024
Inorganic and Radiation Analytical Toxicology Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, MS S110-5, Atlanta, GA 30341-3717, USA.
The Centers for Disease Control and Prevention (CDC) Radiation Laboratory's primary mission is to provide laboratory support for an effective and efficient response to public health radiological emergencies. The laboratory has developed methods for several radiological threat agents, including Iridium-192 (Ir-192). Ir-192 can be analyzed via its gamma energy through analytical methods such as High Purity Germanium (HPGe) and its beta energy through Liquid Scintillation Counting (LSC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!