Studies on animal models with mutations in ameloblastin gene have suggested that the extracellular matrix protein ameloblastin (AMBN) plays important roles in controlling cell-matrix adhesion and ameloblast polarization during amelogenesis. In order to examine the function of AMBN in cell polarization and morphology, we developed an in vitro 3D cell culture model to examine the effect of AMBN and amelogenin (AMEL) addition on ameloblast cell lines. We further used high resolution confocal microscopy to detect expression of polarization markers in response to AMBN addition. Addition of AMBN to the 3D culture matrix resulted in the clustering and elongation (higher aspect ratio) of ALC in a dose dependent manner. The molar concentration of AMEL required to exact this response from ALC was 2.75- times greater than that of AMBN. This polarization effect of ameloblastin was attributable directly to an evolutionary conserved domain within its exon 5-encoded region. The lack of exon 6-encoded region also influenced AMBN-cell interactions but to a lesser extent. The clusters formed with AMBN were polarized with expression of E-cadherin, Par3 and Cldn1 assembly at the nascent cell-cell junctions. The elongation effect was specific to epithelial cells of ameloblastic lineage ALC and LS8 cells. Our data suggest that AMBN may play critical signaling roles in the initiation of cell polarity by acting as a communicator between cell-cell and cell-matrix interactions. Our investigation has important implications for understanding the function of ameloblastin in enamel-cell matrix adhesion and the outcomes may contribute to efforts to develop strategies for enamel tissue regeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8955733 | PMC |
http://dx.doi.org/10.1016/j.matbio.2021.11.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!