Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pendimethalin is a dinitroaniline herbicide used to control broadleaf weeds by inhibiting the formation of microtubules during cell division. Its use on a variety of crops leads to its potential entry into aquatic environments, but little is known about its sub-lethal toxicity to early developmental stages of aquatic vertebrates. To address this knowledge gap, we assessed the toxicity of pendimethalin to zebrafish embryos and larvae by measuring mortality, developmental abnormalities, oxidative respiration, reactive oxygen species, gene expression, and locomotor activity following exposure to the herbicide throughout early development. Embryos at ~6 h post-fertilization (hpf) were exposed to either a solvent control (0.1% DMSO, v/v), embryo rearing medium (ERM), or one dose of either 1, 2.5, 5, or 25 μM pendimethalin for up to 7-days post fertilization depending on the bioassay. Exposure to 25 μM pendimethalin resulted in high prevalence of spinal curvature, tail malformations, pericardial edema, and yolk sac edema at 4 dpf, while exposure to 5 μM pendimethalin induced pericardial edema and lordosis in the fish exposed over 7 dpf. Exposure to pendimethalin up to 5 μM did not negatively impact oxidative respiration (e.g., basal respiration, oligomycin-induced ATP production) in embryos following a 24-h exposure. Pendimethalin did not induce reactive oxygen species at concentrations of 1-5 μM. Levels of transcripts associated with oxidative respiration and damage response were altered in 7d-larvae; cox1 mRNA was increased in larvae fish exposed to 1 μM while cox5a1 and sod2 mRNA were decreased with 2.5 μM exposure. The Visual Motor Response (VMR) test for light-dark response revealed that larval activity in the dark period was reduced for zebrafish exposed to >1 μM pendimethalin compared to ERM and DMSO solvent control groups. These data inform on the sub-lethal toxicity of pendimethalin to early stages of fish embryos and larvae.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ntt.2021.107051 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!