Examining sampling protocols for microplastics on recreational trails.

Sci Total Environ

School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia. Electronic address:

Published: April 2022

Hiking and trail running are increasingly popular and could present a significant source of microplastics on recreational trails in nature reserves, wilderness areas and conservation areas. Deposition may be concentrated on trail surfaces, however sampling techniques for microplastics on soil or rock surfaces have not yet been developed. In this study, sampling strategies were evaluated for microplastics on three types of recreational trail surfaces - asphalt, compacted soil, and a loose overlay of soil. We spiked trail surfaces with pink rubber microplastics and collected samples using a handheld vacuum, manual sweeping, and gel lifter tape. Spiked and in situ microplastics were extracted from soil samples using density separation (NaI, ρ = 1.6 g cm) with organic matter digestion (30% HO), then visualised and counted using stereomicroscopy. The gel lifter tape yielded the highest recovery of spiked and counts of in situ microplastics on asphalt (118% ± 15%, 3183 ± 830 microplastics per 40 cm) and compacted soil (127% ± 7%, 333 ± 106 microplastics per 40 cm). Sweeping produced quantitative recovery for spiked microplastics on compacted soil (88% ± 13%) but yielded significantly fewer in situ microplastics (148 ± 40 microplastics per 40 cm) than the tape. Sweeping was the only technique to achieve quantitative recovery of spiked microplastics in the loose overlay of soil (110% ± 14%) when soil carbon was 0.8% ± 0.3%, however increasing soil carbon was associated with reduced microplastic recovery. Preliminary assessment indicated quantification of microplastics smaller than 100 μm was not possible with any of the methods tested. Sweeping and the gel lifter tape were both effective for evaluating microplastic deposition and spatial distribution on recreational trails, depending on the properties of the trail.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.151813DOI Listing

Publication Analysis

Top Keywords

microplastics
14
recreational trails
12
trail surfaces
12
compacted soil
12
gel lifter
12
lifter tape
12
situ microplastics
12
recovery spiked
12
microplastics 40 cm
12
soil
9

Similar Publications

Co-exposure to polyethylene microplastics and house dust mites aggravates airway epithelial barrier dysfunction and airway inflammation via CXCL1 signaling pathway in a mouse model.

Int Immunopharmacol

December 2024

Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Allergy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China. Electronic address:

Background: Environmental pollutants have been found to contribute to the development and acute exacerbation of asthma. Microplastics (MPs) have received widespread attention as an emerging global pollutant. Airborne MPs can cause various adverse health effects.

View Article and Find Full Text PDF

Unveiling the impact of polystyrene and low-density polyethylene microplastics on arsenic toxicity in earthworms.

J Environ Manage

December 2024

College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China; State Key Laboratory of Nutrient Use and Management, Beijing, 100193, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing, 100193, China. Electronic address:

The high global production combined with low recycling rates of polystyrene (PS) and low-density polyethylene (LDPE) contributes to the abundance of these commonly used plastics in soil, including as microplastics (MPs). However, the combined effects of MPs and heavy metals, such as arsenic (As) on earthworms are poorly understood. Here, we show that neither PS nor LDPE altered the effects of As on the survival, growth, and reproduction of the earthworm Eisenia fetida.

View Article and Find Full Text PDF

Microplastics (MPs) are ubiquitous and are increasing globally, but there is limited information available on their presence in freshwater ecosystems. This research work aims to investigate the abundance, sinking behavior, and risk assessment of MPs in the freshwater River Basantar, Jammu & Kashmir, India. Microplastic abundance in sediments was recorded in the range of 1-6 items g, with a mean abundance of 3 ± 1.

View Article and Find Full Text PDF

From automated Raman to cost-effective nanoparticle-on-film (NPoF) SERS spectroscopy: A combined approach for assessing micro- and nanoplastics released into the oral cavity from chewing gum.

J Hazard Mater

December 2024

Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom; Material and Advanced Technologies for Healthcare, Queen's University of Belfast, 18-30 Malone Road, Belfast BT9 5DL, United Kingdom. Electronic address:

Microplastics (MPs) and Nanoplastics (NPs), a burgeoning health hazard, often go unnoticed due to suboptimal analytical tools, making their way inside our bodies through various means. Surface Enhanced Raman Spectroscopy (SERS), although is utilized in detecting NPs, challenges arise at low concentrations due to their low Raman cross section and inability to situate within hotspots owing to their ubiquitous size and shape. This study presents an innovative and cost-effective approach employing household metallic foils (aluminium and copper) as nanoparticle-on-film (NPoF) substrates for targeting such analytes.

View Article and Find Full Text PDF

Biodegradable plastics, regarded as an ideal substitute for traditional plastics, are increasingly utilized across various industries. However, due to their unique degradation properties, they can generate microplastics (MPs) at a faster rate, potentially posing a threat to plant development. This study employed transcriptomics and metabolomics to investigate the effects of polylactic acid microplastics (PLA-MPs) on the physiological and biochemical characteristics of Brassica chinensis L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!