In this study, we developed a novel colorimetric chemosensor for selective and sensitive recognition of Glutathione (GSH) using a simple binary mixture of commercially accessible and inexpensive metal receptors with names, Bromo Pyrogallol Red (BPR) and Xylenol Orange (XO). This procedure is based on the synergistic coordination of BPR and XO with cerium ion (Ce3+) for the recognition of GSH over other available competitive amino acids (AAs) especially thiol species in aqueous media. Generally, cysteine (Cys) and homocysteine (hCys) can seriously interfere with the detection of GSH among common biological species because they possess similar chemical behavior. Using all the information from 1HNMR and FT-IR studies, the proposed interaction is presented in which GSH acts as a tri-dentate ligand with three N donor atoms in conjunction with BPR and XO as mono and bi-dentate ligands respectively. This approach opens a path for selective detection of other AAs by argumentatively selecting the ensemble of mixed organic ligands from commercially available reagents, thereby eliminating the need for developing synthetic receptors, sample preparation, organic solvent mixtures, and expensive equipment. Evaluating the feasibility of the existing method was led to the determination of GSH in human plasma samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ab.2021.114475 | DOI Listing |
Carbohydr Res
January 2025
Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India; Department of Chemistry, Ramjas College, University of Delhi, Delhi, 110007, India. Electronic address:
Nickel, an essential transition metal, plays a vital role in biological systems and industries. However, exposure to nickel can cause severe health issues, such as asthma, dermatitis, pneumonitis, neurological disorders, and cancers of the nasal cavity and lungs. Due to nickel's toxicity and extensive industrial use, efficient sensors for detecting Ni ions in environmental and biological contexts are essential.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, School of Advanced Sciences, VIT-AP University, Amaravati, 522237, India.
CQHC, a novel colorimetric fluorescent sensor, developed for the selective sensing of ions and well characterised, including SC-XRD. It demonstrated selective sensing for Co, Zn, Hg and F using absorbance titration at 420 nm, 446 nm and the binding constants estimated follows the order F > Co > Hg > Zn. On light of this, molecular logic gate was built for CQHC's selective multi-ion detection.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Department of Chemistry, Faculty of Science, Gazi University, Yenimahalle, Ankara 06560, Turkey. Electronic address:
Coumarin compounds have heterocyclic core with different properties such as high quantum yields, broad Stokes shifts, and superior photophysical and biological activity. It is known that fluorescence properties increase with increased intramolecular charge transfer in systems where electron-withdrawing or donor groups are attached to different positions of the coumarin compound. When these compounds interact with analytes in the environment, the analytes in the environment can be detected by quenching or increasing fluorescence.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Basic Sciences, Sari University of Agricultural Sciences and Natural Resources, P.O.Box 578, Sari, Iran.
Among the various cations, the Fe ion is one of the most critical transition metal ions in living cells for many cellular functions and enzymatic activities. The decrease or overloading of Fe can lead to different disruptions in humans. Also, Fe, highly toxic, is very common in all industrial wastewater.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, India. Electronic address:
A simple, tailor-made, novel chemosensor based on 1,10-phenanthroline Schiff base incorporating N, N-Diethylamino salicylaldehyde (1) was designed and synthesized. The sensing ability of chemosensor 1 was tested via colorimetric, UV-Vis and fluorescence spectroscopy. Chemosensor 1 could effectively and specifically detect diethylchlorophosphate (DCP) in acetonitrile displaying naked eye colour change from pale yellow to dark yellow while fluorogenic colour changes from blue to pink fluorescence (365 nm UV lamp irradiation).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!