Climate Effects on Subsoil Carbon Loss Mediated by Soil Chemistry.

Environ Sci Technol

Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, Virginia 24061, United States.

Published: December 2021

Subsoils store at least 50% of soil organic carbon (SOC) globally, but climate change may accelerate subsoil SOC (SOC) decomposition and amplify SOC-climate feedbacks. The climate sensitivity of SOC decomposition varies across systems, but we lack the mechanistic links needed to predict system-specific SOC vulnerability as a function of measurable properties at larger scales. Here, we show that soil chemical properties exert significant control over SOC decomposition under elevated temperature and moisture in subsoils collected across terrestrial National Ecological Observatory Network sites. Compared to a suite of soil and site-level variables, a divalent base cation-to-reactive metal gradient, linked to dominant mechanisms of SOC mineral protection, was the best predictor of the climate sensitivity of SOC decomposition. The response was "U"-shaped, showing higher sensitivity to temperature and moisture when either extractable base cations or reactive metals were highest. However, SOC in base cation-dominated subsoils was more sensitive to moisture than temperature, with the opposite relationship demonstrated in reactive metal-dominated subsoils. These observations highlight the importance of system-specific mechanisms of mineral stabilization in the prediction of SOC vulnerability to climate drivers. Our observations also form the basis for a spatially explicit, scalable, and mechanistically grounded tool for improved prediction of SOC response to climate change.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.1c04909DOI Listing

Publication Analysis

Top Keywords

soc decomposition
16
soc
11
climate change
8
climate sensitivity
8
sensitivity soc
8
soc vulnerability
8
temperature moisture
8
prediction soc
8
climate
6
climate effects
4

Similar Publications

Surface-Enhanced Raman Spectroscopic Study of Key Intermediates in Electrochemical Ammonia Decomposition.

J Am Chem Soc

December 2024

State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.

Ammonia is an alternative hydrogen storage material and a promising source of sustainable clean energy. The lack of a mechanistic understanding of ammonia electrooxidation hinders the efforts to overcome the slow kinetics of the anode reaction in direct ammonia fuel cells. Herein, we use surface-enhanced Raman spectroscopy to study the electro-decomposition of ammonia on the Au surface.

View Article and Find Full Text PDF

Use of In Situ X-ray Absorption to Probe Reactivity: A Catalysis Golden Rule.

J Am Chem Soc

December 2024

Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States.

The decomposition of ozone on supported manganese oxide catalysts, studied here, exemplifies reactions involving electron transfer. In situ extended X-ray absorption fine-structure spectra (Mn K-edge) on in situ treated samples show that the supported phase in MnO/SiO resembles MnO while that in MnO/AlO samples resembles MnO. In situ Raman spectroscopy shows the involvement of a common peroxide surface species.

View Article and Find Full Text PDF

[Impact of Organic Amendment on the Bacterial Community and Rice Yield in Paddy Soil].

Huan Jing Ke Xue

January 2025

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.

In this investigation, the influence of organic amendment on the structural and functional dynamics of soil microbial communities and its effect on rice productivity were examined. Five fertilization treatments from a 40-year field experiment were selected: no fertilizer (CK), inorganic NPK fertilizer (NPK), inorganic NPK combined with green manure (NG), inorganic NPK combined with green manure and pig manure (NGM), and inorganic NPK combined with green manure and rice straw (NGS). The findings revealed that the organic amendment enhanced the soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) levels, alongside an increase in rice yield; notably, the most significant improvements were observed with the NGM treatment.

View Article and Find Full Text PDF

Hydrofluoroolefins (HFOs) and hydrochlorofluoroolefins (HCFOs) are the leading synthetic replacements for compounds successively banned by the Montreal Protocol and amendments. HFOs and HCFOs readily decompose in the atmosphere to form fluorinated carbonyls, including CFCHO in yields of up to 100%, which are then photolyzed. A long-standing issue, critical for the transition to safe industrial gases, is whether atmospheric decomposition of CFCHO yields any quantity of CHF (HFC-23), which is one of the most environmentally hazardous greenhouse gases.

View Article and Find Full Text PDF

CRISPR/Cas9-mediated mutagenesis of SEED FATTY ACID REDUCER genes significantly increased seed oil content in soybean.

Plant Cell Physiol

December 2024

State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.

Increasing seed oil content (SOC) is an important breeding goal for soybean breeding. While significant efforts have been made to improve SOC through metabolic pathway engineering, research to increase soybean SOC by reducing lipid degradation and fatty acid (FA) decomposition during seed maturation process is limited. Seed Fatty Acid Reducers (SFAR) are members of the GDSL enzyme family and play a crucial role in lipid metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!