A huge fraction of global biodiversity resides within biogenic habitats that ameliorate physical stresses. In most cases, details of how physical conditions within facilitative habitats respond to external climate forcing remain unknown, hampering climate change predictions for many of the world's species. Using intertidal mussel beds as a model system, we characterize relationships among external climate conditions and within-microhabitat heat and desiccation conditions. We use these data, along with physiological tolerances of two common inhabitant taxa (the isopod Cirolana harfordi and the porcelain crab Petrolisthes cinctipes), to examine the magnitude of climate risk inside and outside biogenic habitat, applying an empirically derived model of evaporation to simulate mortality risk under a high-emissions climate-warming scenario. We found that biogenic microhabitat conditions responded so weakly to external climate parameters that mortality risk was largely unaffected by climate warming. In contrast, outside the biogenic habitat, desiccation drove substantial mortality in both species, even at temperatures 4.4-8.6°C below their hydrated thermal tolerances. These findings emphasize the importance of warming-exacerbated desiccation to climate-change risk and the role of biogenic habitats in buffering this less-appreciated stressor. Our results suggest that, when biogenic habitats remain intact, climate warming may have weak direct effects on organisms within them. Instead, risk to such taxa is likely to be indirect and tightly coupled with the fate of habitat-forming populations. Conserving and restoring biogenic habitats that offer climate refugia could therefore be crucial to supporting biodiversity in the face of climate warming.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ecy.3596 | DOI Listing |
Sci Total Environ
January 2025
School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China; Key Laboratory for Urban Agriculture, Ministry of Agriculture and Rural Affairs, 800 Dongchuan Rd., Shanghai 200240, China. Electronic address:
Biogenic volatile organic compounds (BVOCs) are emitted by urban vegetation and can interact with anthropogenic pollutants to generate secondary organic aerosols (SOA) that are atmospheric pollutants in urban environments. In urban forests, SOA comprise up to 90 % of all fine aerosols (particulate matter smaller than 1 μm [PM]) in the summer. PM can greatly affect urban air quality and public health.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, Kuopio, Finland.
Primary and secondary atmospheric pollutants, including carbon monoxide (CO), carbon dioxide (CO), nitrogen oxides (NO), ozone (O), sulphur dioxide (SO) and particulate matter (PM/PM) with associated heavy metals (HMs) and micro- and nanoplastics (MPs/NPs), have the potential to influence and alter interspecific interactions involving insects that are responsible for providing essential ecosystem services (ESs). Given that insects rely on olfactory cues for vital processes such as locating mates, food sources and oviposition sites, volatile organic compounds (VOCs) are of paramount importance in interactions involving insects. While gaseous pollutants reduce the lifespan of individual compounds that act as olfactory cues, gaseous and particulate pollutants can alter their biosynthesis and emission and exert a direct effect on the olfactory system of insects.
View Article and Find Full Text PDFMar Environ Res
January 2025
Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, PlySmouth, PL1 2PB, UK. Electronic address:
Understanding the role of species interactions (e.g. competition and facilitation) in structuring communities is a fundamental goal of ecology.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, 31151, Republic of Korea.
Lactic acid bacteria (LAB), traditionally consumed as fermented foods, are now being applied to the medical field beyond health-functional food as probiotics. Therefore, it is necessary to continuously discover and evaluate new strains with suitable probiotic characteristics, mainly focusing on safety. In this study, we isolated eight new strains from postmenopausal vaginal fluid using culturomics approaches, an emerging area of interest.
View Article and Find Full Text PDFBiology (Basel)
November 2024
Department of BioSciences and Technology for Food, Agriculture, and Environment, University of Teramo, 64100 Teramo, Italy.
The Trabocchi Coast in the Chieti district of the mid-Adriatic (Italy) is one of the few rocky areas within the General Fisheries Commission GSA 17, alongside Mount Conero (Ancona 43°00'01″ N 13°52'13″ E) and the small San Nicola Rock (Ascoli Piceno; 43°32'0″ N 13°36'0″ E). This coastline is known for its biodiversity-rich bays, inlets, and submerged cliffs. Since 2015, annual biodiversity surveys have been conducted in the area, focusing on marine species richness and the identification of non-native species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!