Plant interactions control the carbon distribution of Dodonaea viscosa in karst regions.

PLoS One

Jianshui Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China.

Published: January 2022

Biomass and carbon (C) distribution are suggested as strategies of plant responses to resource stress. Understanding the distribution patterns of biomass and C is the key to vegetation restoration in fragile ecosystems, however, there is limited understanding of the intraspecific biomass and C distributions of shrubs resulting from plant interactions in karst areas. In this study, three vegetation restoration types, a Dodonaea viscosa monoculture (DM), a Eucalyptus maideni and D. viscosa mixed-species plantation (EDP) and a Pinus massoniana and D. viscosa mixed-species plantation (PDP), were selected to determine the effects of plant interactions on the variations in the C distributions of D. viscosa among the three vegetation restoration types following 7 years of restoration. The results showed that: (1) plant interactions decreased the leaf biomass fraction. The interaction of P. massoniana and D. viscosa decreased the branch biomass fraction and increased the stem and root biomass fraction, but not the interaction of E. maideni and D. viscosa. Plant interactions changed the C concentrations of stems and roots rather than those of leaves and branches. (2) Plant interactions affected the soil nutrients and forest characteristics significantly. Meanwhile, the biomass distribution was affected by soil total nitrogen, clumping index and gap fraction; the C concentrations were influenced by the leaf area index and soil total phosphorus. (3) The C storage proportions of all the components correlated significantly with the proportion of biomass. Our results suggested that both the biomass distribution and C concentration of D. viscosa were affected by plant interactions, however, the biomass fraction not the C concentration determines the C storage fraction characteristics for D. viscosa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8610255PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0260337PLOS

Publication Analysis

Top Keywords

plant interactions
28
biomass fraction
16
vegetation restoration
12
biomass
10
viscosa
9
plant
8
carbon distribution
8
dodonaea viscosa
8
three vegetation
8
restoration types
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!