We report the isolation of vanadium(II) in a metal-organic framework (MOF) by the reaction of the chloride-capped secondary building unit in the all-vanadium(III) V-MIL-101 () with 1,4-bis(trimethylsilyl)-2,3,5,6-tetramethyl-1,4-dihydropyrazine. The reduced material, , has a secondary building unit with the formal composition [VV], with each metal ion presenting one open coordination site. Subsequent reaction with O yields a side-on η vanadium-superoxo species, . The MOF featuring V(III)-superoxo moieties exhibits a mild enhancement in the isosteric enthalpy of adsorption for methane compared to the parent V-MIL-101. We present this synthetic methodology as a potentially broad way to access low-valent open metal sites within MOFs without causing a loss of crystallinity or porosity. The low-valent sites can serve as isolable intermediates to access species otherwise inaccessible by direct synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.1c02850DOI Listing

Publication Analysis

Top Keywords

metal-organic framework
8
secondary building
8
building unit
8
isolation side-on
4
side-on viii-η-o
4
viii-η-o intermediacy
4
intermediacy low-valent
4
low-valent vii
4
vii metal-organic
4
framework report
4

Similar Publications

Phosphorescent gold(iii) complexes possess long-lived emissive excited states, making them ideal for use as molecular sensors and photosensitizers for organic transformations. Literature reports indicate that gold(iii) emitters exhibit good catalytic activity in homogeneous photochemical reactions. Heterogeneous metal-organic framework (MOF)-supported gold(iii) photocatalysts are considered to show high recyclability in photochemical reactions and potentially provide new selectivities.

View Article and Find Full Text PDF

Supercapacitors (SCs) are gaining attention in energy storage due to their high-power density, rapid charge/discharge ability, and long life cycle. Improving these features relies on developing advanced electrode materials with better energy storage properties. This study explores UiO-66, a zirconium-based metal-organic framework (MOF), which offers advantages like a large surface area, tunable pore sizes, and stability.

View Article and Find Full Text PDF

Total antioxidant capacity (TAC) is an important indicator for assessing the merit of natural plants and foods. Herein, a visual TAC assay is developed based on the oxidase-like activity of nitrogen-doped carbon nanotubes loaded with Fe nanoparticles (FeNPs@NCNT), which is prepared via high-temperature pyrolysis of metal-organic framework precursors and can catalyze the oxidation of colorless -phenylenediamine (OPD) to colored 2,3-diaminophenazine (DAP). The addition of antioxidants (e.

View Article and Find Full Text PDF

Conformation Regulation of Perylene Diimide Derivatives by Lanthanide Coordination for Turn-On Fluorescence Sensing of Sarin Simulants.

Inorg Chem

January 2025

Key Laboratory of Applied Surface and Colloid Chemistry (MOE), School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China.

Fluorescent metal-organic frameworks (MOFs) are promising sensing materials that have received much attention in recent years, in which the organic ligand conformation changes usually lead to variations of their sensing behavior. Based on this, in the present work, perylene diimide (PDI) derivatives with excellent photochemical properties closely related to their conformation and molecule packing fashion were selected as organic linkers to detect sarin simulant diethyl chlorophosphate (DCP). By the coordination interactions with large lanthanide cations through terminal carboxylate groups from the PDI derivative, a series of one-dimensional coordination polymers, named [Ln(PDICl-2COO)(μ-O)(DMF)] (SNNU-112, Ln = Yb/Tb/Sm/Nd/Pr/Gd/Eu/Er/Ce, PDICl-2COOH = ,'-bis(4-benzoic acid)-1,2,6,7-tetrachlorohydrazone-3,4,9,10-tetracarboxylic acid diimide) were synthesized.

View Article and Find Full Text PDF

A novel antimonotungstate (AT)-based heterometallic framework {[Er(HO)][Fe(Hpdc)(B-β-SbWO)]}·50HO (, Hpdc = pyridine-2,5-dicarboxylic acid) was obtained through a synergistic strategy of in situ-generated transition-metal-encapsulated polyoxometalate (POM) building units and the substitution reaction. Its structural unit is composed of a tetra-Fe-substituted Krebs-type [Fe(Hpdc)(B-β-SbWO)] subunit and two [Er(HO)] cations. This subunit can be regarded as a product of carboxylic oxygen atoms of Hpdc ligands replacing active water ligands in the [Fe(HO)(B-β-SbWO)] species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!