Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The quest for a universal method to shape the vesicular morphology in dynamic and diversified manners is a challenging topic of cell mimicry. Here we present a simple gas exchange strategy that can direct the deformation movements of polymer vesicles. Such vesicles are assembled by a class of gas-based dynamic polymers, where CO connects between the frustrated Lewis pair via dynamic gas-bridged bonds. Use of other competitive gases (NO, SO, or CH) to exchange the CO linkages can change the polymer structure and drive the membrane to proceed with three fundamental movements, including membrane stretching, membrane incurvation, and membrane protrusion, thus remolding the shapes of polymersomes. The choices of gas types, concentrations, and combinations are crucial to adjusting the vesicle evolution, local change of membrane curvature, and anisotropic geometrical transformation. This will become a generalized strategy to control the vesicular polymorphism and deformable behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.1c07838 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!