A noninvasive fiber material-based wearable electrochemical sensor to continuously monitor the glucose level in sweat is highly desirable for smart fabrics for personal diabetes management. To achieve it, the key challenge is to construct fibers with high stretchability and excellent electrochemical performance. Herein, a highly stretchable Ni-Co metal-organic framework/Ag/reduced graphene oxide/polyurethane (Ni-Co MOF/Ag/rGO/PU) fiber-based wearable electrochemical sensor is fabricated for monitoring the glucose level in sweat continuously with high sensitivity and accuracy. The rGO/PU fiber was simply produced by an improved wet spinning technology, and the Ni-Co MOF nanosheet was coated on its surface to prepare the Ni-Co MOF/Ag/rGO/PU (NCGP) fiber electrode. The Ni-Co MOF has a large specific surface area and high catalytic activity, which enables the fiber sensors with good electrochemical performance with a high sensitivity of 425.9 μA·mM·cm and a wide linear range of 10 μM-0.66 mM. More importantly, the NCGP fiber electrode also shows extremely high stretching and bending stability under mechanical deformation. Also, the NCGP fiber electrode has high selectivity and long-time storage stability. Moreover, the NCGP fiber-based three-electrode system was sewn with an absorbent fabric and fixed on a stretchable polydimethylsiloxane film substrate to form a nonenzymatic sweat glucose wearable sensor, which realized real-time monitoring of glucose in human sweat with high accuracy. This indicates that our designed NCGP fiber can be used as a wearable electrochemical sensor for the bio-diagnostics of body sweat.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.1c04106DOI Listing

Publication Analysis

Top Keywords

wearable electrochemical
16
electrochemical sensor
16
ncgp fiber
16
ni-co mof
12
fiber electrode
12
highly stretchable
8
fiber
8
sweat glucose
8
glucose level
8
level sweat
8

Similar Publications

Fully Inkjet-Printed Flexible Graphene-Prussian Blue Platform for Electrochemical Biosensing.

Biosensors (Basel)

January 2025

University of Zagreb, Faculty of Chemical Engineering & Technology, Trg Marka Marulića 19, 10000 Zagreb, Croatia.

Prussian Blue (PB) is commonly incorporated into screen-printed enzymatic devices since it enables the determination of the enzymatically produced hydrogen peroxide at low potentials. Inkjet printing is gaining popularity in the development of electrochemical sensors as a substitute for screen printing. This work presents a fully inkjet-printed graphene-Prussian Blue platform, which can be paired with oxidase enzymes to prepare a biosensor of choice.

View Article and Find Full Text PDF

The early monitoring of cardiovascular biomarkers is essential for the prevention and management of some cardiovascular diseases. Here, we present a novel, compact, and highly integrated skin electrode as a mechanical-electrochemical dual-model E-skin, designed for the real-time monitoring of heart rate and sweat ion concentration, two critical parameters for assessing cardiovascular health. As a pressure sensor, this E-skin is suitable for accurate heart rate monitoring, as it exhibits high sensitivity (25.

View Article and Find Full Text PDF

Recent studies have shown that lactate is a molecule that plays an indispensable role in various physiological cellular processes, such as energy metabolism and signal transductions related to immune and inflammatory processes. For these reasons, interest in its detection using biosensors for non-invasive analyses of sweat during sports activity and in clinical reasons assessments has increased. In this minireview, an in-depth study was carried out on biosensors that exploited using electrochemical methods and innovative nanomaterials for lactate detection in sweat.

View Article and Find Full Text PDF

BSA/PEI/GOD modified cellulose nanocrystals for construction of hydrogel-based flexible glucose sensors for sweat detection.

J Mater Chem B

January 2025

School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.

With the miniaturization, integration and intelligence of sweat electrochemical sensor technology, hydrogel flexible sensors have demonstrated immense potential in the field of real-time and non-invasive personal health monitoring. However, it remains a challenge to integrate excellent mechanical properties, self-healing properties, and electrochemical sensing capabilities into the preparation of hydrogel-based flexible sensors. The utilization of CBPG (cellulose nanocrystals (CNCs)@bovine serum albumin (BSA)@polyethyleneimine (PEI) glucose oxidase (GOD) nanomaterial) as both an enhancing phase and sensor probe within a hydrogel matrix, with poly(vinyl alcohol) (PVA) serving as the primary network constituent, has been proposed as a non-invasive technique for monitoring trace glucose levels in sweat.

View Article and Find Full Text PDF

Wearable sensors are increasingly being used as biosensors for health monitoring. Current wearable devices are large, heavy, invasive, skin irritants, or not continuous. Miniaturization was chosen to address these issues, using a femtosecond laser-conversion technique to fabricate miniaturized laser-induced graphene (LIG) sensor arrays on and encapsulated within a polyimide substrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!