Protein fouling on critical biointerfaces causes significant public health and clinical ramifications. Multiple strategies, including superhydrophobic (SHP) surfaces and coatings, have been explored to mitigate protein adsorption on solid surfaces. SHP materials with underwater air plastron (AP) layers hold great promise by physically reducing the contact area between a substrate and protein molecules. However, sustaining AP stability or lifetime is crucial in determining the durability and long-term applications of SHP materials. This work investigated the effect of protein on the AP stability using model SHP substrates, which were prepared from a mixture of silica nanoparticles and epoxy. The AP stability was determined using a submersion test with real-time visualization. The results showed that AP stability was significantly weakened by protein solutions compared to water, which could be attributed to the surface tension of protein solutions and protein adsorption on SHP substrates. The results were further examined to reveal the correlation between protein fouling and accelerated AP dissipation on SHP materials by confocal fluorescent imaging, surface energy measurement, and surface robustness modeling of the Cassie-Baxter to Wenzel transition. The study reveals fundamental protein adsorption mechanisms on SHP materials, which could guide future SHP material design to better mitigate protein fouling on critical biointerfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c15981DOI Listing

Publication Analysis

Top Keywords

protein adsorption
16
shp materials
16
protein fouling
12
protein
11
air plastron
8
fouling critical
8
critical biointerfaces
8
shp
8
mitigate protein
8
shp substrates
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!