Perovskite quantum dots (PQDs) exhibit exceptional fluorescence property and are potential candidates for fluorescent metal-ion sensors. The present work shows the presence of inner filter effect (IFE) in perovskite sensing systems and its significance in enhancing the detection limits. Two different sensing systems (with a different extent of IFE), one with simple long-chain monodentate ligand-capped PQDs and the other with short-chain bidentate ligand capped PQDs, were developed toward sensing Co. The fluorescence quenching mechanism is elucidated and is observed to be a combination of Forster resonance energy transfer (FRET) and IFE. The electrostatic interaction of donor (D) with acceptor (A) and its distance for energy transfer was appropriate and was well within the requirement for a good energy transfer from PQDs (donor) to Co ions (acceptor) facilitating partial FRET. Also, the spectral overlap of absorption of excited and emitted radiation (of PQDs) with that of Co allows a significant amount of IFE. PQDs were successfully modified for lesser spectral overlap with reduced IFE. The reduction in IFE adversely drops the detection levels from 0.733 × 10 to 0.7970 × 10 on modification. This work provides insights into the design and development of high sensing perovskite probes with manipulation of IFE and also shows the importance of IFE to be considered during the study of such sensing systems, which has been neglected so far in perovskite systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c17061 | DOI Listing |
Anal Chem
January 2025
Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland.
Droplet-based microfluidics is a powerful tool for high-throughput analysis of liquid samples with significant applications in biomedicine and biochemistry. Nevertheless, extracting content-rich information from single picolitre-sized droplets at high throughputs remains challenging due to the weak signals associated with these small volumes. Overcoming this limitation would be transformative for fields that rely on high-throughput screening, enabling broader multiparametric analysis.
View Article and Find Full Text PDFSci Adv
January 2025
State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China.
Hong-Ou-Mandel (HOM) interference is the foundation of quantum optics to test the degree of indistinguishability of two incoming photons, playing a key role in quantum communication, sensing, and photonic quantum computing. Realizing high-visibility HOM interference with massively parallel optical channels is challenging due to the lack of available natural optical references for aligning independent arrayed laser pairs. Here, we demonstrate 50 parallel comb-teeth pairs of continuous-wave weak coherent photons HOM interference using two independently frequency post-aligned soliton microcombs (SMCs), achieving an average fringe visibility over 46%.
View Article and Find Full Text PDFSci Robot
January 2025
Department of Mechanical Engineering, University of Hong Kong, Pokfulam, Hong Kong, China.
Micro air vehicles (MAVs) capable of high-speed autonomous navigation in unknown environments have the potential to improve applications like search and rescue and disaster relief, where timely and safe navigation is critical. However, achieving autonomous, safe, and high-speed MAV navigation faces systematic challenges, necessitating reduced vehicle weight and size for high-speed maneuvering, strong sensing capability for detecting obstacles at a distance, and advanced planning and control algorithms maximizing flight speed while ensuring obstacle avoidance. Here, we present the safety-assured high-speed aerial robot (SUPER), a compact MAV with a 280-millimeter wheelbase and a thrust-to-weight ratio greater than 5.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
Faculty of Fine Arts, Design and Architecture Department of Landscape Architecture, Tekirdağ Namık Kemal University, Tekirdağ, Türkiye.
Wetlands provide necessary ecosystem services, such as climate regulation and contribution to biodiversity at global and local scales, and they face spatial changes due to natural and anthropogenic factors. The degradation of the characteristic structure signals potential severe threats to biodiversity. This study aimed to monitor the long-term spatial changes of the Göksu Delta, a critical Ramsar site, using remote sensing techniques.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Intelligent Transportation Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511455, China.
Integrating mobile monitoring data with street view images (SVIs) holds promise for predicting local air pollution. However, algorithms, sampling strategies, and image quality introduce extra errors due to a lack of reliable references that quantify their effects. To bridge this gap, we employed 314 taxis to monitor NO, NO, PM, and PM, and extracted features from ∼382,000 SVIs at multiple angles (0°, 90°, 180°, 270°) and buffer radii (100-500 m).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!