TiCO MXene has been proposed as a promising electrode material for alkali-ion batteries owing to its tunable physical and chemical properties without sacrificing the excellent metallic conductivity. However, it still suffers from low specific capacity due to its limited interlayer spacing, especially for a larger ion like sodium (Na). Sulfur doping was suggested as a viable strategy to improve the electrode's storage performance. Herein, first-principles calculations and kinetic Monte Carlo (kMC) simulations were carried out to study the role of S doping on Li/Na intercalation. Based on experimental findings, two different doping sites, C (S) and O (S), with various S concentrations were reported and therefore used as the models in this study. Computations reveal that S doping on both C and O sites improves the electronic conductivity of the MXenes as their densities of states at the Fermi level are increased. In addition, the doped MXenes reveal an expanded lattice parameter in the normal direction, which agrees with experimental observations. However, only the S-doped MXenes display an enlarged interlayer spacing, whereas doping at the C site only increases the layer thickness. The enlarged interlayer spacing in the S-doped MXenes improves stabilities and transport kinetics of ion intercalation as indicated by their significantly lower insertion energies and diffusion barriers when compared with those of the pristine system. The kMC simulations were carried out to account for anisotropic diffusion in the S-doped system. The obtained macroscopic properties of diffusion coefficients and apparent activation energies of the S-doped system clearly confirm its superior transport kinetics. The estimated diffusion coefficients of Li(Na) are improved by 4(8) orders of magnitude upon S doping. A fundamental understanding of the role of S doping on the improved capacitive kinetics serves as a good guide for developing MXene-based electrode materials for Li- and Na-ion batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c17802 | DOI Listing |
Sci Rep
January 2025
School of Information Technology, Jiangsu Open University, Nanjing, 210017, China.
Because of its dimensional characteristics, two-dimensional (2D) materials exhibit many special properties. The key to researching their features is to prepare high-quality larger-area monolayer 2D materials. Metal-assisted mechanical exfoliation method offers the possibility.
View Article and Find Full Text PDFSmall
January 2025
School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China.
Intrinsic low conductivity, poor structural stability, and narrow interlayer spacing limit the development of MnO in sodium-ion (Na) supercapacitors. This work constructs the hollow cubic Mn-PBA precursor through an ion-exchange process to in situ obtain a hollow cubic H-Ni-MnO composite with Ni doping and oxygen vacancies (O) via a self-oxidation strategy. Experiments and theoretical calculations show that the hollow nanostructure and the expanding interlayer spacing induced by Ni doping are beneficial for exposing more reactive sites, synergistically manipulating the Na transport pathways.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
Magnetotransport of conventional semiconductor based double layer systems with barrier suppressed interlayer tunneling has been a rewarding subject due to the emergence of an interlayer coherent state that behaves as an excitonic superfluid. Large angle twisted bilayer graphene offers unprecedented strong interlayer Coulomb interaction, since both layer thickness and layer spacing are of atomic scale and a barrier is no more needed as the twist induced momentum mismatch suppresses tunneling. The extra valley degree of freedom also adds richness.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Institute for Frontier Materials, Deakin University, Geelong, Victoria, 3220, Australia.
Two-dimensional (2D) nanochannels have demonstrated outstanding performance for sieving specific molecules or ions, owing to their uniform molecular channel sizes and interlayer physical/chemical properties. However, controllably tuning nanochannel spaces with specific sizes and simultaneously achieving high mechanical strength remain the main challenges. In this work, the inter-sheet gallery d-spacing of graphene oxide (GO) membrane is successfully tailored with high mechanical strength via a general radical-induced polymerization strategy.
View Article and Find Full Text PDFSmall
December 2024
Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
The demand for temperature-robust electromagnetic wave (EMW) absorption materials is escalating due to the varying operational temperatures of electronic devices, which can easily soar up to 100 °C, significantly affecting EMW interference management. Traditional absorbers face performance degradation across broad temperature ranges due to alterations in electronic mobility and material impedance. This study presented a novel approach by integrating semiconductor metal-organic frameworks (SC-MOFs) with paraffin wax (PW), leveraging the precise control of interlayer spacing in SC-MOFs for electron mobility regulation and the introduction of paraffin wax for temperature-inert electromagnetic properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!