Cofactors and pathogens: Flavin mononucleotide and flavin adenine dinucleotide (FAD) biosynthesis by the FAD synthase from Brucella ovis.

IUBMB Life

Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain.

Published: July 2022

The biosynthesis of the flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), cofactors used by 2% of proteins, occurs through the sequential action of two ubiquitous activities: a riboflavinkinase (RFK) that phosphorylates the riboflavin (RF) precursor to FMN, and a FMN:adenylyltransferase (FMNAT) that transforms FMN into FAD. In most mammals two different monofunctional enzymes have each of these activities, but in prokaryotes a single bifunctional enzyme, FAD synthase (FADS), holds them. Differential structural and functional traits for RFK and FMNAT catalysis between bacteria and mammals, as well as within the few bacterial FADSs so far characterized, has envisaged the potentiality of FADSs from pathogens as targets for the development of species-specific inhibitors. Here, we particularly characterize the FADS from the ovine pathogen Brucella ovis (BoFADS), causative agent of brucellosis. We show that BoFADS has RFK activity independently of the media redox status, but its FMNAT activity (in both forward and reverse senses) only occurs under strong reducing conditions. Moreover, kinetics for flavin and adenine nucleotides binding to the RFK site show that BoFADS binds preferentially the substrates of the RFK reaction over the products and that the adenine nucleotide must bind prior to flavin entrapment. These results, together with multiple sequence alignments and phylogenetic analysis, point to variability in the less conserved regions as contributing to the species-specific features in prokaryotic FADSs, including those from pathogens, that allow them to adopt alternative strategies in FMN and FAD biosynthesis and overall flavin homeostasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9299109PMC
http://dx.doi.org/10.1002/iub.2576DOI Listing

Publication Analysis

Top Keywords

flavin adenine
12
flavin mononucleotide
8
adenine dinucleotide
8
dinucleotide fad
8
fad biosynthesis
8
fad synthase
8
brucella ovis
8
biosynthesis flavin
8
fmn fad
8
flavin
7

Similar Publications

Mitochondrial-cytochrome c oxidase II promotes glutaminolysis to sustain tumor cell survival upon glucose deprivation.

Nat Commun

January 2025

Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.

Glucose deprivation, a hallmark of the tumor microenvironment, compels tumor cells to seek alternative energy sources for survival and growth. Here, we show that glucose deprivation upregulates the expression of mitochondrial-cytochrome c oxidase II (MT-CO2), a subunit essential for the respiratory chain complex IV, in facilitating glutaminolysis and sustaining tumor cell survival. Mechanistically, glucose deprivation activates Ras signaling to enhance MT-CO2 transcription and inhibits IGF2BP3, an RNA-binding protein, to stabilize MT-CO2 mRNA.

View Article and Find Full Text PDF

Elucidation of a distinct photoreduction pathway in class II photolyase.

Proc Natl Acad Sci U S A

January 2025

Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China.

Class II photolyases (PLs) are a distant subclade in the photolyase/cryptochrome superfamily, displaying a unique Trp-Tyr tetrad for photoreduction and exhibiting a lower quantum yield (QY) of DNA repair (49%) than class I photolyases (82%) [M. Zhang, L. Wang, S.

View Article and Find Full Text PDF

Balance between photoreduction efficiency, cofactor affinity, and allosteric coupling of halogenase flavoenzymes.

Photochem Photobiol Sci

December 2024

Biophysical Chemistry and Diagnostics, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany.

Flavin-dependent halogenases (FDHs) are promising candidates for the sustainable production of halogenated organic molecules by biocatalysis. FDHs require only oxygen, halide and a fully reduced flavin adenine dinucleotide (FADH) cofactor to generate the reactive HOX that diffuses 10 Å to the substrate binding pocket and enables regioselective oxidative halogenation. A key challenge for the application of FDHs is the regeneration of the FADH.

View Article and Find Full Text PDF

The radical pair mechanism accounts for the magnetic field sensitivity of a large class of chemical reactions and is hypothesised to underpin numerous magnetosensitive traits in biology, including the avian compass. Traditionally, magnetic field sensitivity in this mechanism is attributed to radical pairs with weakly interacting, well-separated electrons; closely bound pairs were considered unresponsive to weak fields due to arrested spin dynamics. In this study, we challenge this view by examining the FAD-superoxide radical pair within cryptochrome, a protein hypothesised to function as a biological magnetosensor.

View Article and Find Full Text PDF

Flavin adenine nucleotide (FAD)-dependent oxidoreductase enzyme Alcohol oxidase (AOX) facilitates the growth of methylotrophic yeast C. boidinii by catabolizing methanol, producing formaldehyde and hydrogen peroxide. Vacuolar Protease-A (PrA) from C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!