PINK1 mediates neuronal survival in monkey.

Protein Cell

Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.

Published: January 2022

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8776920PMC
http://dx.doi.org/10.1007/s13238-021-00889-wDOI Listing

Publication Analysis

Top Keywords

pink1 mediates
4
mediates neuronal
4
neuronal survival
4
survival monkey
4
pink1
1
neuronal
1
survival
1
monkey
1

Similar Publications

Sepsis is a life-threatening condition that often results in severe brain injury, primarily due to excessive inflammation and mitochondrial dysfunction. This study aims to investigate the neuroprotective effects of Apelin-13, a bioactive peptide, in a rat model of sepsis-induced brain injury (SBI). Specifically, we examined the role of Apelin-13 in regulating mitophagy through the phosphatase and tensin homolog-induced putative kinase 1 (PINK1)/Parkin pathway and its impact on nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome-mediated pyroptosis and oxidative stress.

View Article and Find Full Text PDF

PINK1 modulates Prdx2 to reduce lipotoxicity-induced apoptosis and attenuate cardiac dysfunction in heart failure mice with a preserved ejection fraction.

Clin Transl Med

January 2025

Key Laboratory For Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou, China.

Introduction: Heart failure with preserved ejection fraction (HFpEF) is a complex condition characterized by metabolic dysfunction and myocardial lipotoxicity. The roles of PTEN-induced kinase 1 (PINK1) and peroxiredoxin-2 (Prdx2) in HFpEF pathogenesis remain unclear.

Objective: This study aimed to investigate the interaction between PINK1 and Prdx2 to mitigate cardiac diastolic dysfunction in HFpEF.

View Article and Find Full Text PDF

Bone defect repair remains a great challenge in the field of orthopedics. Human body essential trace element such as copper is essential for bone regeneration, but how to use it in bone defects and the underlying its mechanisms of promoting bone formation need to be further explored. In this study, by doping copper into mesoporous bioactive glass nanoparticles (Cu-MBGNs), we unveil a previously unidentified role of copper in facilitating osteoblast mitophagy and mitochondrial dynamics, which enhance amorphous calcium phosphate (ACP) release and subsequent biomineralization, ultimately accelerating the process of bone regeneration.

View Article and Find Full Text PDF

The inhibition of PINK1/Drp1-mediated mitophagy by hyperglycemia leads to impaired osteoblastogenesis in diabetes.

iScience

January 2025

Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Article Synopsis
  • Impaired bone quality and increased fracture risk in diabetes may be linked to oxidative stress from high glucose levels affecting osteoblast function.
  • High glucose causes an increase in reactive oxygen species and disrupts the PINK1/Drp1 pathway, which is crucial for mitophagy and late-stage osteoblast differentiation.
  • Enhancing PINK1/Drp1 expression in diabetic mice can improve bone quality and mineral density, indicating it as a possible target for treating diabetic osteoporosis.
View Article and Find Full Text PDF

Resveratrol (RES), a natural polyphenolic compound, has garnered significant attention for its therapeutic potential in various pathological conditions. This review explores how RES modulates mitophagy-the selective autophagic degradation of mitochondria essential for maintaining cellular homeostasis. RES promotes the initiation and execution of mitophagy by enhancing PINK1/Parkin-mediated mitochondrial clearance, reducing reactive oxygen species production, and mitigating apoptosis, thereby preserving mitochondrial integrity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!