Livers of caribou and reindeer (Rangifer tarandus) from Canada (n = 146), Greenland (n = 30), Svalbard (n = 7), and Sweden (n = 60) were analyzed for concentrations of eight perfluoroalkyl carboxylic acids and four perfluoroalkane sulfonic acids. In Canadian caribou, PFNA (range < 0.01-7.4 ng/g wet weight, ww) and PFUnDA (<0.01-5.6 ng/g ww) dominated, whereas PFOS predominated in samples from South Greenland, Svalbard, and Sweden, although the highest concentrations were found in caribou from Southwest Greenland (up to 28 ng/g ww). We found the highest median concentrations of all PFAS except PFHxS in Akia-Maniitsoq caribou (Southwest Greenland, PFOS 7.2-19 ng/g ww, median 15 ng/g ww). The highest concentrations of ΣPFAS were also found in Akia-Maniitoq caribou (101 ng/g ww) followed by the nearby Kangerlussuaq caribou (45 ng/g ww), where the largest airport in Greenland is situated, along with a former military base. Decreasing trends in concentrations were seen for PFOS in the one Canadian and three Swedish populations. Furthermore, PFNA, PFDA, PFUnDA, PFDoDA, and PFTrDA showed decreasing trends in Canada's Porcupine caribou between 2005 and 2016. In Sweden, PFHxS increased in the reindeer from Norrbotten between 2003 and 2011. The reindeer from Västerbotten had higher concentrations of PFNA and lower concentrations of PFHxS in 2010 compared to 2002. Finally, we observed higher concentrations in 2010 compared to 2002 (albeit statistically insignificant) for PFHxS in Jämtland, while PFNA, PFDA, PFUnDA, PFDoDA, and PFTrDA showed no difference at all.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8979910PMC
http://dx.doi.org/10.1007/s11356-021-16729-7DOI Listing

Publication Analysis

Top Keywords

caribou reindeer
8
perfluoroalkyl substances
4
substances circum-arcticrangifer
4
circum-arcticrangifer caribou
4
reindeer livers
4
livers caribou
4
reindeer rangifer
4
rangifer tarandus
4
tarandus canada
4
canada n = 146
4

Similar Publications

: A combination of increased human presence in the Arctic zone alongside climate change has led to a decrease in the number of wild reindeer (). Studying the genetic potential of this species will aid in conservation efforts, while simultaneously promoting improved meat productivity in domestic reindeer. Alongside reducing feed costs, increasing disease resistance, etc.

View Article and Find Full Text PDF

The reindeer () is a circumpolar member of the Cervidae family, and has adapted to a harsh environment. Summer is a critical period for reindeer, with peak digestibility facilitating body fat accumulation. The gut microbiota plays a pivotal role in nutrient metabolism, and is affected by captivity.

View Article and Find Full Text PDF

In the current model, the auto-negative feedback action of Period (Per) and Cryptochrome (Cry) on their own transcription is the hallmark mechanism driving cell-autonomous circadian rhythms. Although this model likely makes sense even if Per and Cry undertake this action in a mutually independent manner, many studies have suggested the functional significance of direct physical interaction between Per and Cry. However, even though the interaction is a biochemical process that pertains to the fundamentals of the circadian oscillator, its in vivo contribution to circadian rhythm generation remains undefined.

View Article and Find Full Text PDF

Introduction: Due to the Danish fauna, reindeer are not immediately available should Santa Claus need to replace his reindeer while traveling across Denmark with Christmas gifts. Instead, Santa Claus should rely on roe deer, which are predominant in Denmark. However, the population of roe deer may be threatened by collisions between ambulances and roe deer.

View Article and Find Full Text PDF
Article Synopsis
  • Caring for newborns limits mammalian females' ability to gather resources, especially during the energy-demanding early lactation period.
  • Different ungulates have developed various strategies for protecting their vulnerable newborns, from staying hidden to being mobile, which can influence their mothers' movement patterns.
  • A study of 54 populations of 23 ungulate species shows that maternal movements are affected by the resource availability and type of neonatal strategy, highlighting the importance of these tactics in understanding how species adapt to environmental changes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!