Background: Salinity is an essential abiotic stress in plants. Dunaliella is a genus of high-salt-tolerant microalgae. The present study aimed to compare the characterizations of D. bioculata and D. quartolecta at different levels and investigate novel genes response to salt stress.
Methods And Results: High chlorophyll contents were detected in D. bioculata on the 35 d of salt stress, while high lipid and carotenoid contents were detected in D. quartolecta via morphological and biochemical analyses. Physiological analysis showed that D. quartolecta cells had a smaller increase in osmotic potential, a smaller decrease in the Na+/K+ ratio and photochemical efficiency (Fv/Fm), and a lower relative conductivity than D. bioculata cells. The genomic lengths of D. quartolecta and D. bioculata were 396,013,629 bp (scaffold N50 = 1954 bp) and 427,667,563 bp (scaffold N50 = 3093 bp) via high-throughput sequencing and de novo assembly, respectively. Altogether, 25,751 and 26,620 genes were predicted in their genomes by annotation analysis with various biodatabases. The D. bioculata genome showed more segmental duplication events via collinearity analysis. More single nucleotide polymorphisms and insertion-deletion variants were detected in the D. bioculata genome. Both algae, which showed a close phylogenetic relationship, may undergo positive selection via bioinformatics analysis. A total of 382 and 85 novel genes were screened in D. bioculata and D. quartolecta, with 138 and 51 enriched KEGG pathways, respectively. Unlike the novel genes adh1, hprA and serA, the relative expression of livF and phbB in D. bioculata was markedly downregulated as salinity increased, as determined by qPCR analysis. The relative expression of leuB, asd, pstC and proA in D. quartolecta was markedly upregulated with the same salinity increase.
Conclusion: Dunaliella quartolecta is more halophilic than D. bioculata, with more effective responses to high salt stress based on the multiphase comparative data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-021-06984-9 | DOI Listing |
Environ Sci Technol
January 2025
National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
The neurotoxin methylmercury (MeHg) is produced mainly from the transformation of inorganic Hg by microorganisms carrying the gene pair. Paddy soils are known to harbor diverse microbial communities exhibiting varying abilities in methylating inorganic Hg, but their distribution and environmental drivers remain unknown at a large spatial scale. Using gene amplicon sequencing, this study examined Hg-methylating communities from major rice-producing paddy soils across a transect of ∼3600 km and an altitude of ∼1300 m in China.
View Article and Find Full Text PDFHLA
January 2025
HLA and Histocompatibility Laboratory, CHRU de Nancy, Vandœuvre-lès-Nancy, France.
The novel allele HLA-DPB1*1617:01 differs from HLA-DPB1*05:01:01:01 by one non-synonymous nucleotide substitution in exon 2.
View Article and Find Full Text PDFHLA
January 2025
Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Medical University, Moscow, Russia.
The new HLA-B*52:130 allele showed one nonsynonymous nucleotide difference compared to the HLA-B*52:01:01:01 allele in codon 170.
View Article and Find Full Text PDFCancer Med
January 2025
Department of Respiratory Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China.
Background: Lung adenocarcinoma (LUAD) exhibits molecular heterogeneity, with mitochondrial damage affecting progression. The relationship between mitochondrial damage and immune infiltration, and Weighted Gene Co-expression Network Analysis (WGCNA)-derived biomarkers for LUAD classification and prognosis, remains unexplored.
Aims: The objective of our research is to identify gene modules closely related to the clinical stages of LUAD using the WGCNA method.
HLA
January 2025
HLA and Histocompatibility Laboratory, CHRU de Nancy, Vandœuvre-lès-Nancy, France.
The novel allele HLA-HLA-B*40:02:39 differs from HLA-B*40:02:01:01 by one synonymous nucleotide substitution in exon 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!