Magnetic resonance imaging (MRI) studies are sensitive to biological mechanisms of neuroplasticity in white matter (WM). In particular, diffusion tensor imaging (DTI) has been used to investigate structural changes. Historically, functional MRI (fMRI) neuroplasticity studies have been restricted to gray matter, as fMRI studies have only recently expanded to WM. The current study evaluated WM neuroplasticity pre-post motor training in healthy adults, focusing on motor learning in the non-dominant hand. Neuroplasticity changes were evaluated in two established WM regions-of-interest: the internal capsule and the corpus callosum. Behavioral improvements following training were greater for the non-dominant hand, which corresponded with MRI-based neuroplasticity changes in the internal capsule for DTI fractional anisotropy, fMRI hemodynamic response functions, and low-frequency oscillations (LFOs). In the corpus callosum, MRI-based neuroplasticity changes were detected in LFOs, DTI, and functional correlation tensors (FCT). Taken together, the LFO results converged as significant amplitude reductions, implicating a common underlying mechanism of optimized transmission through altered myelination. The structural and functional neuroplasticity findings open new avenues for direct WM investigations into mapping connectomes and advancing MRI clinical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8741691 | PMC |
http://dx.doi.org/10.1007/s00429-021-02407-4 | DOI Listing |
Funct Integr Genomics
January 2025
National Agri-Food and Biomanufacturing Institute, Sector-81, SAS Nagar, Knowledge City, Punjab, India.
Mitochondria, the cellular powerhouses, are pivotal to neuronal function and health, particularly through their role in regulating synaptic structure and function. Spine reprogramming, which underlies synapse development, depends heavily on mitochondrial dynamics-such as biogenesis, fission, fusion, and mitophagy as well as functions including ATP production, calcium (Ca) regulation, and retrograde signaling. Mitochondria supply the energy necessary for assisting synapse development and plasticity, while also regulating intracellular Ca homeostasis to prevent excitotoxicity and support synaptic neurotransmission.
View Article and Find Full Text PDFElife
January 2025
Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland.
The ability to extinguish contextual fear in a changing environment is crucial for animal survival. Recent data support the role of the thalamic nucleus reuniens (RE) and its projections to the dorsal hippocampal CA1 area (RE→dCA1) in this process. However, it remains poorly understood how RE impacts dCA1 neurons during contextual fear extinction (CFE).
View Article and Find Full Text PDFMethodsX
June 2025
School of Computer Science and Engineering, Vellore Institute of Technology, Vandalur - Kelambakkam Road, Chennai, 600 127 Tamil Nadu, India.
This study introduces a framework that integrates AI-driven Game-Based Language Teaching (GBLT) with advanced neuroscience to transform language education for visually impaired learners. Built on the principles of neuroplasticity and epigenetics, the approach leverages educational psychology with the help of adaptive AI to deliver personalized, gamified learning experiences that reshape neural pathways, improve memory retention, and strengthen emotional resilience. By fostering low-stress, immersive environments, it triggers positive epigenetic changes, enhancing long-term cognitive flexibility.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
Background: Alzheimer's disease (AD) is a debilitating neurodegenerative disorder that is difficult to predict and is typically diagnosed only after symptoms manifest. Recently, CD4 T cell-derived double-negative T (DNT) cells have shown strong immuno-regulatory properties in both in vitro and in vivo neuronal inflammation studies. However, the effectiveness of DNT cells in treating on AD are not yet fully understood.
View Article and Find Full Text PDFBr J Pharmacol
January 2025
Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy.
Background And Purpose: Inflammatory bowel disease (IBD) patients display genetic polymorphisms in toll-like receptor 4 (TLR4) genes, contributing to dysregulate enteric nervous system (ENS) circuits with increased levels of 5-HT and alteration of the neuroimmune crosstalk. In this study, we investigated the impact of TLR4 signalling on mouse ENS dysfunction caused by dextran sulphate sodium (DSS)-induced ileitis.
Experimental Approach: Male C57BL/6J (wild-type [WT]) and TLR4 mice (10 ± 2 weeks old) received 2% DSS in drinking water for 5 days and then were switched to 3-day regular drinking water.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!