Purpose: We reported that oxytocin (OXT), added to freshly prepared lacrimal gland lobules, induced myoepithelial cell (MEC) contraction. In other systems, OXT activates phospholipase C (PLC) generating Inositol 1,4,5-trisphosphate (IP3) which increases intracellular calcium concentration ([Ca2+]i) causing contraction. The aim of the current study was to investigate the role of this pathway in OXT-induced contraction of MEC.
Methods: Tear volume was measured using the cotton thread method. Lacrimal gland MEC were isolated and propagated from α-smooth muscle actin (SMA)-green fluorescent protein (GFP) mice, in which MEC express GFP making them easily identifiable. RNA and protein samples were prepared for RT-PCR and Western blotting for G protein expression. Changes in [Ca2+]i were measured in Fura-2 loaded MEC using a ratio imaging system. MEC contraction was monitored in real time and changes in cell size were quantified using ImageJ software.
Results: OXT applied either topically to surgically exposed lacrimal glands or delivered subcutaneously resulted in increased tear volume. OXT stimulated lacrimal gland MEC contraction in a dose-dependent manner, with a maximum response at 10-7 M. MEC express the PLC coupling G proteins, Gαq and Gα11, and their activation by OXT resulted in a concentration-dependent increase in [Ca2+]i with a maximum response at 10-6 M. Furthermore, the activation of the IP3 receptor to increase [Ca2+]i is crucial for OXT-induced MEC contraction since blocking the IP3 receptor with 2-APB completely abrogated this response.
Conclusions: We conclude that OXT uses the PLC/Ca2+ pathway to stimulate MEC contraction and increase lacrimal gland secretion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8626846 | PMC |
http://dx.doi.org/10.1167/iovs.62.14.25 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!