Background Separate noncontrast CT to quantify the coronary artery calcium (CAC) score often precedes coronary CT angiography (CTA). Quantifying CAC scores directly at CTA would eliminate the additional radiation produced at CT but remains challenging. Purpose To quantify CAC scores automatically from a single CTA scan. Materials and Methods In this retrospective study, a deep learning method to quantify CAC scores automatically from a single CTA scan was developed on training and validation sets of 292 patients and 73 patients collected from March 2019 to July 2020. Virtual noncontrast scans obtained with a spectral CT scanner were used to develop the algorithm to alleviate tedious manual annotation of calcium regions. The proposed method was validated on an independent test set of 240 CTA scans collected from three different CT scanners from August 2020 to November 2020 using the Pearson correlation coefficient, the coefficient of determination, or , and the Bland-Altman plot against the semiautomatic Agatston score at noncontrast CT. The cardiovascular risk categorization performance was evaluated using weighted κ based on the Agatston score (CAC score risk categories: 0-10, 11-100, 101-400, and >400). Results Two hundred forty patients (mean age, 60 years ± 11 [standard deviation]; 146 men) were evaluated. The positive correlation between the automatic deep learning CTA and semiautomatic noncontrast CT CAC score was excellent (Pearson correlation = 0.96; = 0.92). The risk categorization agreement based on deep learning CTA and noncontrast CT CAC scores was excellent (weighted κ = 0.94 [95% CI: 0.91, 0.97]), with 223 of 240 scans (93%) categorized correctly. All patients who were miscategorized were in the direct neighboring risk groups. The proposed method's differences from the noncontrast CT CAC score were not statistically significant with regard to scanner ( = .15), sex ( = .051), and section thickness ( = .67). Conclusion A deep learning automatic calcium scoring method accurately quantified coronary artery calcium from CT angiography images and categorized risk. © RSNA, 2021 See also the editorial by Goldfarb and Cao et al in this issue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1148/radiol.2021211483 | DOI Listing |
Insights Imaging
January 2025
Department of Radiology, Peking University First Hospital, Beijing, 100034, China.
Objectives: To evaluate the performance of a 3D V-Net-based segmentation model of adrenal lesions in characterizing adrenal glands as normal or abnormal.
Methods: A total of 1086 CT image series with focal adrenal lesions were retrospectively collected, annotated, and used for the training of the adrenal lesion segmentation model. The dice similarity coefficient (DSC) of the test set was used to evaluate the segmentation performance.
Med Biol Eng Comput
January 2025
Non-Invasive Imaging and Diagnostic Laboratory, Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, India.
Detection of early mild cognitive impairment (EMCI) is clinically challenging as it involves subtle alterations in multiple brain sub-anatomic regions. Among different brain regions, the corpus callosum and lateral ventricles are primarily affected due to EMCI. In this study, an improved deep canonical correlation analysis (CCA) based framework is proposed to fuse magnetic resonance (MR) image features from lateral ventricular and corpus callosal structures for the detection of EMCI condition.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Mechanical Engineering & Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.
The development of accurate methods for determining how alloy surfaces spontaneously restructure under reactive and corrosive environments is a key, long-standing, grand challenge in materials science. Using machine learning-accelerated density functional theory and rare-event methods, in conjunction with environmental transmission electron microscopy (ETEM), we examine the interplay between surface reconstructions and preferential segregation tendencies of CuNi(100) surfaces under oxidation conditions. Our modeling approach predicts that oxygen-induced Ni segregation in CuNi alloys favors Cu(100)-O c(2 × 2) reconstruction and destabilizes the Cu(100)-O (2√2 × √2)45° missing row reconstruction (MRR).
View Article and Find Full Text PDFBrief Bioinform
November 2024
Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México.
This study addresses the challenging task of identifying viruses within metagenomic data, which encompasses a broad array of biological samples, including animal reservoirs, environmental sources, and the human body. Traditional methods for virus identification often face limitations due to the diversity and rapid evolution of viral genomes. In response, recent efforts have focused on leveraging artificial intelligence (AI) techniques to enhance accuracy and efficiency in virus detection.
View Article and Find Full Text PDFRadiology
January 2025
From the Department of Radiology, Shenzhen Nanshan People's Hospital, Shenzhen University, Taoyuan Rd No. 89, Nanshan District, Shenzhen 518000, Guangdong, China (H.H., Z.D., Y.Q.); Medical AI Laboratory and Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China (J.M., R.L., B.H.); Department of Medical Imaging, People's Hospital of Longhua, Shenzhen, Guangdong, China (X.P., Y.Z.); and Department of Radiology, Shenzhen People's Hospital, Shenzhen, Guangdong, China (D.Z., G.H.).
Background Multiparametric MRI, including contrast-enhanced sequences, is recommended for evaluating suspected prostate cancer, but concerns have been raised regarding potential contrast agent accumulation and toxicity. Purpose To evaluate the feasibility of generating simulated contrast-enhanced MRI from noncontrast MRI sequences using deep learning and to explore their potential value for assessing clinically significant prostate cancer using Prostate Imaging Reporting and Data System (PI-RADS) version 2.1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!