Recently, soft electronics have attracted significant attention for various applications such as flexible devices, artificial electronic skins, and wearable devices. For practical applications, the key requirements are an appropriate electrical conductivity and excellent elastic properties. Herein, using the cyano-silver complexes resulting from coordination bonds between the nitrile group of poly(styrene--acrylonitrile) (SAN) and Ag ions, a self-healing elastomer demonstrating electrical conductivity is obtained. Because of these coordination complexes, the Ag-SAN elastomer possesses elasticity, compared with pristine SAN. The fracture strain of the Ag-SAN elastomers increased with the amount of added Ag ions, reaching up to 1000%. Additionally, owing to the presence of reversible coordination bonds, the elastomer exhibits self-healing properties at room temperature and electrical conductivity, thereby improving the possibility of its utilization in novel applications wherein elastic materials are generally exposed to external stimuli.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.1c01786 | DOI Listing |
PLoS One
January 2025
Department of Pulmonary Diseases, Uludag University Faculty of Medicine, Bursa, Turkey.
Background: End-stage renal disease (ESRD) patients frequently experience protein-energy wasting (PEW), which increases their morbidity and mortality rates.
Objective: This study explores the effects of nutritional status and pulmonary function on the short- and long-term mortality of ESRD patients undergoing hemodialysis.
Materials And Methods: 67 consecutive ESRD patients on maintenance hemodialysis were included in the study.
ACS Appl Mater Interfaces
January 2025
Department of Physics, School of Electrical and Electronics Engineering, SASTRA Deemed to be University, Thanjavur 613 401, Tamil Nadu, India.
This study presents the fabrication of highly conducting Au fabric electrodes using a layer-by-layer (LBL) approach and its application toward energy storage. Through the ligand-exchange mechanism, the alternating layers of tris(2-aminoethyl)amine (TREN) and gold nanoparticles (Au NPs) encapsulated with tetraoctylammonium bromide (TOABr) ligands (Au-TOABr) were deposited onto the fabric to achieve a highly conducting Au fabric (0.12 Ω/□) at room temperature in just two LBL cycles.
View Article and Find Full Text PDFJ Mol Model
January 2025
Nanjing Hydraulic Research Institute, Shanghai, China.
Context: This study systematically investigated the effects of single S-atom vacancy defects and composite defects (vacancy combined with doping) on the properties of MoS using density functional theory. The results revealed that N-doped S-vacancy MoS has the smallest composite defect formation energy, indicating its highest stability. Doping maintained the direct band gap characteristic, with shifts in the valence band top.
View Article and Find Full Text PDFNano Lett
January 2025
Shanghai, China State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
Metal sulfide electrodes for sodium-ion batteries face trade-offs among high capacity, fast kinetics, and stability. The challenge lies in breaking and restoring metal-sulfur bonds and allowing rapid ionic transport. Here we explore the boundary of conversion- and intercalation-type metal sulfides to develop ideal sodium-ion storage materials.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Materials Science and Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan.
Self-organization realizes various nanostructures to control material properties such as superconducting vortex pinning and thermal conductivity. However, the self-organization of nucleation and growth is constrained by the growth geometric symmetry. To realize highly controlled three-dimensional nanostructures by self-organization, nanostructure formation that breaks the growth geometric symmetry thermodynamically and kinetically, such as tilted or in-plane aligned nanostructures, is a challenging issue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!