Creating highly branched plasmonic superparticles can effectively induce broadband light absorption and convert light to heat regardless of the light wavelength, angle, and polarization. However, their direct synthesis in a controllable manner remains a significant challenge. In this work, we propose a strain modulation strategy to produce branched Au nanostructures that promotes the growth of Au on Au seeds in the Volmer-Weber (island) mode instead of the typical Frank-van der Merwe (layer-by-layer) mode. The key to this strategy is to continuously deposit polydopamine formed on the growing surface of the seeds to increase the chemical potential of the subsequent deposition of Au, thus achieving continuous heterogeneous nucleation and growth. The branched Au superparticles exhibit a photothermal conversion efficiency of 91.0% thanks to their small scattering cross-section and direction-independent absorption. Even at a low light power of 0.5 W/cm and a low dosage of 25 ppm, these particles show an excellent efficacy in photothermal cancer therapy. This work provides the fundamental basis for designing branched plasmonic nanostructures and expands the application scope of the plasmonic photothermal effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.1c11242 | DOI Listing |
J Genet Eng Biotechnol
March 2025
National Institute of Agricultural Research (INRA), Regional Center of Agricultural Research Rabat, Biotechnology Unit, Rabat 10000 Morocco.
Thymus satureioides is an endemic and medicinal plant of Morocco, widely distributed in the arid and semiarid habitats. Communally used in traditional medicine. In the current study, twelve Inter-Simple Sequence Repeats (ISSR) primers combined with 11 agro-morphological traits were applied to evaluate 60 accessions of T.
View Article and Find Full Text PDFMed Image Anal
March 2025
Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain. Electronic address:
Diffusion Magnetic Resonance Imaging (dMRI) sensitises the MRI signal to spin motion. This includes Brownian diffusion, but also flow across intricate networks of capillaries. This effect, the intra-voxel incoherent motion (IVIM), enables microvasculature characterisation with dMRI, through metrics such as the vascular signal fraction f or the vascular Apparent Diffusion Coefficient (ADC) D.
View Article and Find Full Text PDFAdv Mater
March 2025
Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China.
Achieving organic red/near infrared (NIR) phosphorescence at high temperatures is theoretically challenging because of the severe nonradiative transitions of excited triplet states with low energy gaps. This study realizes bright and persistent red/NIR afterglow with excellent high-temperature resistance up to 413 K via highly efficient (≈100%) phosphorescence resonance energy transfer (PRET) from rationally designed branched phosphorescence luminogens as energy donors to red/NIR dyes as acceptors, coupled with optimized aggregated structures. According to systematic investigations, the abundant internal cavities formed by the highly branched luminogens in solid states ensure dye loading and space limitation, which can considerably suppress nonradiative transitions at high temperatures, promoting a persistent red/NIR afterglow with excellent stability.
View Article and Find Full Text PDFFront Plant Sci
February 2025
Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China.
The composition, structure, and physicochemical properties of starch in sorghum grains greatly influence the processing and quality of the final products. In this study, 19 sorghum lines were examined to analyze various starch-related characteristics. Correlation analysis of these key traits, revealed a significant correlation between amylose and amylopectin content.
View Article and Find Full Text PDFAAPS J
March 2025
Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA.
Effective management of COVID-19 requires clinical tools to treat the disease in addition to preventive vaccines. Several recombinant mAbs and their cocktails have been developed to treat COVID-19 but these have limitations. Here, we evaluate small ankyrin repeat proteins called Ankyrons that were generated to bind with high affinity to the SARS-CoV-2 virus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!