Neuromodulation is becoming more and more important in studying brain function, disease treatment, and brain-computer interfaces. However, traditional regulation methods cannot effectively achieve both wireless regulation and highly sensitive response, which are essential factors in neuromodulation. In this paper, a "magnetism-optogenetic" system is constructed, which uses a magnetic field to drive mechanoluminescent materials (ZnS:Cu) to generate light, thus stimulating photogenetic proteins. This system effectively combines the wireless magnetic regulation with the high sensitivity of optogenetics. The results show that the luminous intensity of this system changes with the power of an external magnetic field. In addition, under the continuous stimulation of the wireless magnetic field, this system can activate hippocampal-related neural responses and induce the expression of C-fos. In the end, this system can further regulate the movement behavior of rats with C1V1 protein expression in the primary motor cortex. This new magnetism-optogenetic system will provide an excellent reference for wireless and highly sensitive neuromodulation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202102023DOI Listing

Publication Analysis

Top Keywords

highly sensitive
12
magnetic field
12
"magnetism-optogenetic" system
8
wireless highly
8
sensitive neuromodulation
8
wireless magnetic
8
system
6
wireless
5
system wireless
4
neuromodulation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!