Background: TP53 is an important tumor suppressor gene on human 17th chromosome with its mutations more than 60% in tumor cells. Lung cancer is the highest incidence malignancy in men around the world. N-6 methylase (m6A) is an enzyme that plays an important role in mRNA splicing, translation, and stabilization. However, its role in TP53-mutant non-small-cell lung cancer (NSCLC) remains unknown.

Method: First, we investigated 17 common m6A regulators' prognostic values in NSCLC. Then, after the establishment of risk signature, we explored the diagnostic value of m6A in TP53-mutant NSCLC. Finally, gene set enrichment analysis (GSEA), gene ontology (GO) enrichment analysis, and differential expression analysis were used to reveal the possible mechanism of m6A regulators affecting TP53-mutant NSCLC patients.

Results: Study showed that nine m6A regulators (YTHDC2, METTL14, FTO, METTL16, YTHDF1, HNRNPA2B1, RBM15, KIAA1429, and WTAP) were expressed differently between TP53-mutant and wild-type NSCLC (p < 0.05); and ALKBH5 and HNRNPA2B1 were associated with the prognostic of TP53-mutant patients. After construction of the risk signature combined ALKBH5 and HNRNPA2B1, we divided patients with TP53 mutations into high- and low-risk groups, and there was a significant survival difference between two groups. Finally, 338 differentially expression genes (DEGs) were found between high- and low-risk groups. GO enrichment analysis, PPI network, and GSEA enrichment analysis showed that m6A may affect the immune environment in extracellular and change the stability of mRNA.

Conclusion: In conclusion, m6A regulators can be used as prognostic predictors in TP53-mutant patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8761469PMC
http://dx.doi.org/10.1002/jcla.24118DOI Listing

Publication Analysis

Top Keywords

lung cancer
12
tp53-mutant non-small-cell
8
non-small-cell lung
8
tp53-mutant nsclc
8
enrichment analysis
8
m6a regulators
8
tp53-mutant
5
m6a
5
nsclc
5
expression prognostic
4

Similar Publications

We report a case of Acanthamoeba infection in an HCT recipient with steroid-refractory GVHD. We highlight the multiple challenges that free-living ameba infections present to the clinician, the clinical laboratory, transplant infectious disease for review, hospital epidemiology if nosocomial transmission is considered, and public health officials, as exposure source identification can be a significant challenge. Transplant physicians should include Acanthamoeba infections in their differential diagnosis of a patient with skin, sinus, lung, and/or brain involvement.

View Article and Find Full Text PDF

Polymer based nanoformulations offer substantial prospects for efficacious chemotherapy delivery. Here, we developed a pH-responsive polymeric nanoparticle based on acidosis-triggered breakdown of boronic ester linkers. A biocompatible hyaluronic acid (HA) matrix served as a substrate for carrying a doxorubicin (DOX) prodrug which also possesses natural affinity for CD44 cells.

View Article and Find Full Text PDF

Histologic transformation from non-small cell to small cell lung cancer (SCLC) is a resistance mechanism to immune checkpoint inhibitors. We report herein a case of lung adenocarcinoma who developed liver and brain metastases during adjuvant atezolizumab therapy. The patient underwent a craniotomy to resect a brain metastasis, which was pathologically diagnosed as SCLC.

View Article and Find Full Text PDF

Background: Lung cancer surgery is associated with a high incidence of chronic postsurgical pain (CPSP), which necessitates long-term analgesic prescriptions. However, while essential for managing pain, these have shown various adverse effects. Current guidelines recommend using peripheral nerve blocks over epidural anaesthesia for perioperative analgesia in minimally invasive thoracic surgery (MITS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!