Exercise improves the insulin sensitivity of glucose uptake in skeletal muscle. Due to that, exercise has become a cornerstone treatment for type 2 diabetes mellitus (T2DM). The mechanisms by which exercise improves skeletal muscle insulin sensitivity are, however, incompletely understood. We conducted a systematic review to identify all genes whose gain or loss of function alters skeletal muscle glucose uptake. We subsequently cross-referenced these genes with recently generated data sets on exercise-induced gene expression and signaling. Our search revealed 176 muscle glucose-uptake genes, meaning that their genetic manipulation altered glucose uptake in skeletal muscle. Notably, exercise regulates the expression or phosphorylation of more than 50% of the glucose-uptake genes or their protein products. This included many genes that previously have not been associated with exercise-induced insulin sensitivity. Interestingly, endurance and resistance exercise triggered some common but mostly unique changes in expression and phosphorylation of glucose-uptake genes or their protein products. Collectively, our work provides a resource of potentially new molecular effectors that play a role in the incompletely understood regulation of muscle insulin sensitivity by exercise.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.30179DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
20
glucose uptake
16
insulin sensitivity
16
glucose-uptake genes
12
muscle glucose
8
endurance resistance
8
resistance exercise
8
exercise improves
8
uptake skeletal
8
muscle insulin
8

Similar Publications

Digital muscle reconstructions have gained attraction in recent years, serving as powerful tools in both educational and research contexts. These reconstructions can be derived from various 2D and 3D data sources, enabling detailed anatomical analyses. In this study, we evaluate the efficacy of surface scans in accurately reconstructing the volumes of the rotator cuff and teres major muscles across a diverse sample of hominoids.

View Article and Find Full Text PDF

Optimized methods for scRNA-seq and snRNA-seq of skeletal muscle stored in nucleic acid stabilizing preservative.

Commun Biol

January 2025

Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.

Single cell studies have transformed our understanding of cellular heterogeneity in disease but the need for fresh starting material can be an obstacle, especially in the context of international multicenter studies and archived tissue. We developed a protocol to obtain high-quality cells and nuclei from dissected human skeletal muscle archived in the preservative Allprotect® Tissue Reagent. After fluorescent imaging microscopy confirmed intact nuclei, we performed four protocol variations that compared sequencing metrics between cells and nuclei enriched by either filtering or flow cytometry sorting.

View Article and Find Full Text PDF

Age but not vitamin D is related to sarcopenia in vitamin D sufficient male elderly in rural China.

Sci Rep

January 2025

Department of Endocrinology, The Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.

This study aimed to identify the correlation of serum 25(OH)D level with sarcopenia and its components in Chinese elderly aged 65 years and above from rural areas. A total of 368 Chinese elderly aged 65 years and above in rural areas were enrolled. Indicators of muscle mass and strength, including the appendicular skeletal muscle mass (ASM), skeletal muscle index (SMI) and hand grip strength (HGS) were measured.

View Article and Find Full Text PDF

Profiling of pathogenic variants in Japanese patients with sarcoglycanopathy.

Orphanet J Rare Dis

January 2025

Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.

Background: Sarcoglycanopathies (SGPs) are limb-girdle muscular dystrophies (LGMDs) that can be classified into four types, LGMDR3, LGMDR4, LGMDR5, and LGMDR6, caused by mutations in the genes, SGCA, SGCB, SGCG, and SGCD, respectively. SGPs are relatively rare in Japan. This study aims to profile the genetic variants that cause SGPs in Japanese patients.

View Article and Find Full Text PDF

Association between daily sesame consumption and the risk of sarcopenia in elderly adults: the TCLSIH cohort study.

J Nutr

January 2025

School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China. Electronic address:

Background: Sarcopenia is an age-related, progressive, and systemic skeletal muscle disorder that can lead to numerous adverse outcomes. Animal studies have shown that sesame can enhance skeletal muscle blood flow and improve physical performance. However, no studies have yet explored the association between sesame consumption and the incidence of sarcopenia in the general population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!