Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Poly (ADP‑ribose) polymerase (PARP) inhibitors, including olaparib, niraparib, rucaparib, talazoparib and veliparib, have emerged as one of the most exciting new treatments for solid tumors, particularly in patients with breast‑related cancer antigen 1/2 mutations. Oral administration is convenient and shows favorable compliance with the majority of patients, but it may be affected by numerous factors, including food, metabolic enzymes and transporters. These interactions may be associated with serious adverse drug reactions or may reduce the treatment efficacy of PARP inhibitors. In fact, numerous pharmacokinetic (PK)‑based drug‑drug interactions (DDIs) involve the metabolism of PARP inhibitors, particularly those metabolized via cytochrome P450 enzymes. The present review aims to characterize and summarize the metabolism‑related PK‑based DDIs of PARP inhibitors, and to provide specific recommendations for reducing the risk of clinically significant DDIs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/or.2021.8231 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!