High entropy oxides (HEOs) are an emerging class of materials constituted by multicomponent systems that are receiving special interest as candidates for obtaining novel and desirable properties. In this study we present a detailed investigation of the relevant intermediates arising at the surface of the prototypical HEO MgCoNiCuZnO during low-temperature CO oxidation. By combining Cu L-edge operando soft X-ray absorption spectroscopy (soft-XAS) with density functional theory simulations and FT-IR spectroscopy, we propose that upon HEO exposure to CO at 235 °C reduced Cu(I) sites arise mostly coordinated to activated CO molecules and partly to bidentate carbonate species. When the HEO surface is then exposed to a stoichiometric mixture of CO + 1/2O at 250 °C, CO is produced while bidentate carbonate moieties remain interacting with the Cu(I) sites. We structurally characterize the carbonate and CO preferential adsorption geometries on the Cu(I) surface metal centers, and find that CO adopts a bent conformation that may energetically favor its subsequent oxidation. The unique surface, structural and electronic sensitivity of soft-XAS coupled with the developed data analysis work-flow and supported by FT-IR spectroscopy may be beneficial to characterize often elusive surface properties of systems of catalytic interest.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1cp03946f | DOI Listing |
Angew Chem Int Ed Engl
January 2025
South China Normal University, Chemistry, 55 W Zhongshan Rd, 510006, Guangzhou, CHINA.
LiCoO2 batteries for 3C electronics demand high charging voltage and wide operating temperature range, which are virtually impossible for existing electrolytes due to aggravated interfacial parasitic reactions and sluggish kinetics. Herein, we report an electrolyte design strategy based on a partially fluorinated ester solvent (i.e.
View Article and Find Full Text PDFRSC Adv
January 2025
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences Taiyuan 030001 China
The research and development of the green synthesis route of chemicals has become the focus of research in academia and industry. At present, the highly efficient oxidation of ethanol to acetaldehyde over non-precious metal catalysts under mild conditions is most promising, but remains a big challenge. Herein, the Mo-Sn oxide catalyst was designed to successfully realize low-temperature oxidation of ethanol to acetaldehyde, achieving an acetaldehyde selectivity of 89.
View Article and Find Full Text PDFJ Environ Manage
January 2025
College of Eco-environmental Technology, Guangdong Industry Polytechnic University, Guangzhou, 510300, China.
Nitrogen-removal promotion is a significant problem when biological nitrogen removal is used to treat ammonium nitrogen (NH-N) wastewater with a low chemical oxygen demand (COD)/NH-N (C/N) ratio. In this work, the biological nitrogen removal capacity of the biological contact oxidation reactor (BCOR) system was enhanced through the enrichment of Acidobacteria. The system was successfully started from Day 1 to Day 50 and stably operated through temperature, pH, and dissolved oxygen (DO) regulation from Day 51 to Day 254.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia, Bangladesh.
Hematite (α-FeO) nanoparticles have been synthesized from waste source of iron which contains a prominent amount of iron (93.2 %) and investigated the effect of low temperature calcination. The two-step synthesis method involved preparing ferrous sulfate through acid leaching process followed by oxidation and calcination at temperatures ranging from 200 to 400 °C to produce the desired α-FeO in nano form.
View Article and Find Full Text PDFFood Chem X
January 2025
Tea Research Institute, College of Agriculture and Biotechnolgy, Zhejiang University, Hangzhou 310058, PR China.
The fresh aroma of Longjing tea is vulnerable to unfavorable storage conditions. However, limited research has addressed effective solutions apart from low-temperature storage. This study aimed to investigate the impact of oxygen scavenger on aroma quality of packaged Longjing tea samples at elevated storage temperatures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!