The task of hope speech detection has gained traction in the natural language processing field owing to the need for an increase in positive reinforcement online during the COVID-19 pandemic. Hope speech detection focuses on identifying texts among social media comments that could invoke positive emotions in people. Students and working adults alike posit that they experience a lot of work-induced stress further proving that there exists a need for external inspiration which in this current scenario, is mostly found online. In this paper, we propose a multilingual model, with main emphasis on Dravidian languages, to automatically detect hope speech. We have employed a stacked encoder architecture which makes use of language agnostic cross-lingual word embeddings as the dataset consists of code-mixed YouTube comments. Additionally, we have carried out an empirical analysis and tested our architecture against various traditional, transformer, and transfer learning methods. Furthermore a k-fold paired test was conducted which corroborates that our model outperforms the other approaches. Our methodology achieved an F1-score of 0.61 and 0.85 for Tamil and Malayalam, respectively. Our methodology is quite competitive to the state-of-the-art methods. The code for our work can be found in our GitHub repository (https://github.com/arunimasundar/Hope-Speech-LT-EDI).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8600493PMC
http://dx.doi.org/10.1007/s42979-021-00943-8DOI Listing

Publication Analysis

Top Keywords

hope speech
16
speech detection
12
dravidian languages
8
stacked encoder
8
encoder architecture
8
hope
4
detection dravidian
4
languages cross-lingual
4
cross-lingual embeddings
4
embeddings stacked
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!