This study focuses on modeling, prediction, and analysis of confirmed, recovered, and death cases of COVID-19 by using Fractional Calculus in comparison with other models for eight countries including China, France, Italy, Spain, Turkey, the UK, and the US. First, the dataset is modeled using our previously proposed approach Deep Assessment Methodology, next, one step prediction of the future is made using two methods: Deep Assessment Methodology and Long Short-Term Memory. Later, a Gaussian prediction model is proposed to predict the short-term (30 Days) future of the pandemic, and prediction performance is evaluated. The proposed Gaussian model is compared to a time-dependent susceptible-infected-recovered (SIR) model. Lastly, an analysis of understanding the effect of history is made on memory vectors using wavelet-based denoising and correlation coefficients. Results prove that Deep Assessment Methodology successfully models the dataset with 0.6671%, 0.6957%, and 0.5756% average errors for confirmed, recovered, and death cases, respectively. We found that using the proposed Gaussian approach underestimates the trend of the pandemic and the fastest increase is observed in the US while the slowest is observed in China and Spain. Analysis of the past showed that, for all countries except Turkey, the current time instant is mainly dependent on the past two weeks where countries like Germany, Italy, and the UK have a shorter average incubation period when compared to the US and France.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545307PMC
http://dx.doi.org/10.1109/ACCESS.2020.3021952DOI Listing

Publication Analysis

Top Keywords

deep assessment
16
assessment methodology
16
modeling prediction
8
fractional calculus
8
confirmed recovered
8
recovered death
8
death cases
8
proposed gaussian
8
prediction covid-19
4
covid-19 cases
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!