Attentional resources are limited, and resistance to interference plays a critical role during cognitive tasks and learning. Previous studies have shown that participants find it difficult to avoid being distracted by global visual information when processing local details. In this study, we investigated an innovative approach for enhancing the processing of local visual details by middle-school adolescents. Two groups completed a classic global/local visual search task in which a predefined target could appear at the global or local level, either with or without a frame. The results from the no-frame display group provided a direct replication in adolescents of previous findings in adults, with increasing number of interferent stimuli presented in the display adversely affecting detection of local targets. In addition, by varying the numbers of distractors inside and outside the frame, we showed that distractors only interfered with the processing of local information inside the frame, while the deleterious impact of increases in distracting information was prevented when the distractors were outside the frame. These findings suggest that when a frame delimits an attentional area, the influence of an increasing number of distractors present outside the frame is eliminated. We assume that application of a frame allows for efficient delimitation of attention deployment to a restricted topographical visual area in adolescents. These results evidence that processing of local details can be improved without modifying the structure of the stimuli, and provide promising clues for optimising attentional resources during time-absorbing visual searches. Applicable implications in the educational field are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1177/17470218211065011DOI Listing

Publication Analysis

Top Keywords

processing local
16
visual search
8
attentional resources
8
local details
8
increasing number
8
inside frame
8
distractors frame
8
visual
7
frame
7
local
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!