Two orthologues of the gene encoding the Na-Cl cotransporter (NCC), termed ncca and nccb, were found in the sea lamprey genome. No gene encoding the Na-K-2Cl cotransporter 2 (nkcc2) was identified. In a phylogenetic comparison among other vertebrate NCC and NKCC sequences, the sea lamprey NCCs occupied basal positions within the NCC clades. In freshwater, ncca mRNA was found only in the gill and nccb only in the intestine, whereas both were found in the kidney. Intestinal nccb mRNA levels increased during late metamorphosis coincident with salinity tolerance. Acclimation to seawater increased nccb mRNA levels in the intestine and kidney. Electrophysiological analysis of intestinal tissue ex vivo showed this tissue was anion absorptive. After seawater acclimation, the proximal intestine became less anion absorptive, whereas the distal intestine remained unchanged. Luminal application of indapamide (an NCC inhibitor) resulted in 73% and 30% inhibition of short-circuit current (I) in the proximal and distal intestine, respectively. Luminal application of bumetanide (an NKCC inhibitor) did not affect intestinal I. Indapamide also inhibited intestinal water absorption. Our results indicate that NCCb is likely the key ion cotransport protein for ion uptake by the lamprey intestine that facilitates water absorption in seawater. As such, the preparatory increases in intestinal nccb mRNA levels during metamorphosis of sea lamprey are likely critical to development of whole animal salinity tolerance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8608846 | PMC |
http://dx.doi.org/10.1038/s41598-021-02125-1 | DOI Listing |
The evolutionary transition from simple chordate body plans to complex vertebrate body plans was driven by the acquisition of the neural crest, a stem cell population that retains broad, multi-germ layer developmental potential long after most embryonic cells have become lineage restricted. We have previously shown that neural crest cells share significant gene regulatory architecture with pluripotent blastula stem cells. Here we examine the roles that Krüppel-like Family (Klf) transcription factors play in these stem cell populations.
View Article and Find Full Text PDFJ Exp Biol
January 2025
Michigan State University, Department of Fisheries and Wildlife, East Lansing, MI, USA.
Efficient navigation is crucial for the reproductive success of many migratory species, often driven by competing pressures to conserve energy and reduce predation risk. Little is known about how non-homing species achieve this balance. We show that sea lamprey (Petromyzon marinus), an ancient extant vertebrate, uses persistent patterns in hydro-geomorphology to quickly and efficiently navigate through complex ecosystems.
View Article and Find Full Text PDFNat Commun
January 2025
BGI Research, Qingdao, 266555, China.
J Texture Stud
February 2025
MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Universidade de Évora, Évora, Portugal.
Assessment of sea lamprey texture from the Guadiana and Mondego River basins. Lamprey has served as food for centuries, and nowadays it is highly appreciated, mainly in southern European countries. Therefore, the quality requirements of the lamprey are closely scrutinized by consumers.
View Article and Find Full Text PDFDev Biol
January 2025
Division of Biology and Biological Engineering, California Institute of Technology, 91125, Pasadena, CA, USA. Electronic address:
While the enteric nervous system (ENS) of jawed vertebrates is largely derived from the vagal neural crest, lamprey are jawless vertebrates that lack the vagal neural crest, yet possess enteric neurons derived from late-migrating Schwann cell precursors. To illuminate homologies between the ENS of jawed and jawless vertebrates, here we examine the diversity and distribution of neuronal subtypes within the intestine of the sea lamprey during late embryonic and ammocete stages. In addition to previously described 5-HT-immunoreactive serotonergic neurons, we identified NOS and VIP neurons, consistent with motor neuron identity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!