Synthesized Fe-rGO nanocomposite with ratio of 1/1 (w/w) was prepared and has been used as adsorbent for the removal of Carbamazepine (CBZ) from aqueous solution. The adsorbent was characterized by various techniques such as Fourier-transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Field Emission Scanning Electron Microscopy (FE-SEM) analyses. Linear experiments were performed to compare the best fitting isotherms and kinetics. The Freundlich isotherm (R>0.90) and pseudo second order kinetic (R>0.99) fitted well the experimental data. On the basis of the Langmuir isotherm, the maximum adsorption capacity of Fe-rGO for CBZ was up to 50 mg g at 30 °C. The pH, adsorbent dose, and initial concentration of CBZ were observed to be the leading parameters that affected the removal of CBZ considering the analysis of variance (ANOVA; p<0.05). The optimum process value of variables obtained by numerical optimization corresponds to pH 3.07, an adsorbent dose of 36.2 mg, an initial CBZ concentration of 5 mg L and at 30.15 °C. The results of optimum conditions reveal that a maximum of 94% removal efficiency can be achieved; whereas, this phenomenon was independent of temperature (p-value>0.05). Moreover, Fe-rGO can be used to remove diclofenac (DIC) and cetirizine (CTZ) simultaneously. To sum up, the Fe-rGO is a promising adsorbent not only for the efficient removal of CBZ but also for the reduction of coexisting drugs in aqueous solution.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2021.457DOI Listing

Publication Analysis

Top Keywords

aqueous solution
12
coexisting drugs
8
removal cbz
8
fe-rgo
5
cbz
5
carbamazepine removal
4
removal aqueous
4
solution synthesized
4
synthesized reduced
4
reduced graphene
4

Similar Publications

Understanding the interfacial interaction mechanisms between oil and minerals is of vital importance in the applications of petroleum production and environmental protection. In this work, the interactions of dodecane with mica and calcite in aqueous media were investigated by using the drop probe technique based on atomic force microscopy. For the dodecane-mica interactions, the electrical double layer (EDL) repulsion dominated in 10 mM NaCl solution, and a higher pH facilitated the detachment of dodecane.

View Article and Find Full Text PDF

Anion-π Interactions on Functionalized Porous Aromatic Cages for Gold Recovery from Complex Aqueous with High Capacity.

Angew Chem Int Ed Engl

January 2025

Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Chemistry, Renmin Street, 130024, Changchun, CHINA.

High capacity, selective recovery and separation of precious metals from complex aqueous solutions is essential but remains a challenge in practical applications. Here, we prepared a thiophene-modified aromatic porous organic cage (T-PAC) with high stability for precise recognition and recovery of gold. T-PAC exhibits an outstanding gold uptake capacity of up to 2260 mg/g with fast adsorption kinetics and high adsorption selectivity.

View Article and Find Full Text PDF

1,4-Dihydroxyanthraquinone (1,4-DHAQ, a fluorophore) doped carbon nanotubes@cellulose (1,4-DHAQ-doped CNTs@CL) nanofibrous membranes have been prepared electrospinning and subsequent deacetylation in this work. They have been successfully applied for highly sensitive detection of Cu in aqueous solution. The surface area per unit mass (S/M) ratio of the nanofibrous membranes was enhanced by incorporating the CNTs into cellulose.

View Article and Find Full Text PDF

The regulation of artificial interphase for advanced Zn anode is an effective solution to achieve superior electrochemical performance for aqueous batteries. However, the deployment of atomically precise architectures and ligand engineering to achieve functionalization-oriented regulatory screening is lacking, which is hindered by higher requirements for synthetic chemistry and structural chemistry. Herein, we have first performed ligand engineering which selected zinc ion trapping ligands (-CH3) based on the coordination effect, and zinc substrate binding ligands (-N=N-xC6H5) based on the electrostatic interaction.

View Article and Find Full Text PDF

Unlabelled: The presence of bromate in water poses a significant health risk. In order to effectively eliminate bromate from water, this study synthesized a series of ternary Zn-Ni-Al layered double hydroxides with varying Zn/Ni/Al atomic ratios using a co-precipitation method. The adsorbents were characterized using various techniques including XRD, Fourier transform infrared spectroscopy, and N adsorption-desorption isotherms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!